scholarly journals Challenges for the Implantation of Symbiotic Nanostructured Medical Devices

2020 ◽  
Vol 10 (8) ◽  
pp. 2923 ◽  
Author(s):  
Jean-Pierre Alcaraz ◽  
Gauthier Menassol ◽  
Géraldine Penven ◽  
Jacques Thélu ◽  
Sarra El Ichi ◽  
...  

We discuss the perspectives of designing implantable medical devices that have the criterion of being symbiotic. Our starting point was whether the implanted device is intended to have any two-way (“duplex”) communication of energy or materials with the body. Such duplex communication extends the existing concepts of a biomaterial and biocompatibility to include the notion that it is important to consider the intended functional use of the implanted medical device. This demands a biomimetic approach to design functional symbiotic implantable medical devices that can be more efficient in mimicking what is happening at the molecular and cellular levels to create stable interfaces that allow for the unfettered exchanges of molecules between an implanted device and a body. Such a duplex level of communication is considered to be a necessary characteristic of symbiotic implanted medical devices that are designed to function for long periods of time inside the body to restore and assist the function of the body. We illustrate these perspectives with experience gained from implanting functional enzymatic biofuel cells.

2020 ◽  
Vol 48 (3) ◽  
pp. 867-879
Author(s):  
Geraldine Penven ◽  
Gauthier Menassol ◽  
Jean-Pierre Alcaraz ◽  
François Boucher ◽  
Jacques Thélu ◽  
...  

In 1968 Wolfson et al. published the concept for producing energy inside the body using catalytic electrodes exposed to the body fluid as an electrolyte and utilising naturally occurring fuels such as glucose. Since then, the technology has advanced to enhance the levels of power using enzymes immobilised within three-dimensional bioelectrodes that are nanostructured. Current research in the field of enzymatic fuel cells is directed toward applying electrochemical and nanostructural expertise to increase the energy density, to increase the power density, to increase the operational stability, and to increase the voltage output. Nonetheless, biocompatibility remains the major challenge for increasing the life-time for implanted enzymatic biofuel cells. Here, we discuss the current issues for biocompatibility and suggest directions to enhance the design of biofuel cells so as to increase the life-time of implantation whilst maintaining sufficient performance to provide power for implanted medical devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


2019 ◽  
Vol 117 (1) ◽  
pp. 214-220 ◽  
Author(s):  
Eli J. Curry ◽  
Thinh T. Le ◽  
Ritopa Das ◽  
Kai Ke ◽  
Elise M. Santorella ◽  
...  

Piezoelectric materials, a type of “smart” material that generates electricity while deforming and vice versa, have been used extensively for many important implantable medical devices such as sensors, transducers, and actuators. However, commonly utilized piezoelectric materials are either toxic or nondegradable. Thus, implanted devices employing these materials raise a significant concern in terms of safety issues and often require an invasive removal surgery, which can damage directly interfaced tissues/organs. Here, we present a strategy for materials processing, device assembly, and electronic integration to 1) create biodegradable and biocompatible piezoelectric PLLA [poly(l-lactic acid)] nanofibers with a highly controllable, efficient, and stable piezoelectric performance, and 2) demonstrate device applications of this nanomaterial, including a highly sensitive biodegradable pressure sensor for monitoring vital physiological pressures and a biodegradable ultrasonic transducer for blood–brain barrier opening that can be used to facilitate the delivery of drugs into the brain. These significant applications, which have not been achieved so far by conventional piezoelectric materials and bulk piezoelectric PLLA, demonstrate the PLLA nanofibers as a powerful material platform that offers a profound impact on various medical fields including drug delivery, tissue engineering, and implanted medical devices.


2012 ◽  
Vol 40 (4) ◽  
pp. 716-750 ◽  
Author(s):  
Leili Fatehi ◽  
Susan M. Wolf ◽  
Jeffrey McCullough ◽  
Ralph Hall ◽  
Frances Lawrenz ◽  
...  

Nanomedicine is yielding new and improved treatments and diagnostics for a range of diseases and disorders. Nanomedicine applications incorporate materials and components with nanoscale dimensions (often defined as 1-100 nm, but sometimes defined to include dimensions up to 1000 nm, as discussed further below) where novel physiochemical properties emerge as a result of size-dependent phenomena and high surface-to-mass ratio. Nanotherapeutics and in vivo nanodiagnostics are a subset of nanomedicine products that enter the human body. These include drugs, biological products (biologics), implantable medical devices, and combination products that are designed to function in the body in ways unachievable at larger scales. Nanotherapeutics and in vivo nanodiagnostics incorporate materials that are engineered at the nanoscale to express novel properties that are medicinally useful. These nanomedicine applications can also contain nanomaterials that are biologically active, producing interactions that depend on biological triggers. Examples include nanoscale formulations of insoluble drugs to improve bioavailability and pharmacokinetics, drugs encapsulated in hollow nanoparticles with the ability to target and cross cellular and tissue membranes (including the bloodbrain barrier) and to release their payload at a specific time or location, imaging agents that demonstrate novel optical properties to aid in locating micrometastases, and antimicrobial and drug-eluting components or coatings of implantable medical devices such as stents.


2010 ◽  
Vol 638-642 ◽  
pp. 754-759
Author(s):  
Lawrence E. Eiselstein ◽  
Robert D. Caligiuri

Implantable medical devices must be able to withstand the corrosive environment of the human body for 10 or more years without adverse consequences. Most reported research and development has been on developing materials and devices that are biocompatible and resistant to corrosion-fatigue, pitting, and crevice corrosion. However, little has been directly reported regarding implantable materials with respect to the rate at which they generate soluble ions in-vivo. Most of the biocompatibility studies have been done by examining animal implants and cell cultures rather than examining the rate at which these materials leach ions into the body. This paper will discuss what is currently known about the rate at which common implant materials (such as stainless steels, cobalt-chromium alloys, and nitinol) elute ions under in vitro conditions, what the limitations are of such data, and how this data can be used in medical device development.


2021 ◽  
Vol 10 (36) ◽  
pp. 3152-3158
Author(s):  
Ramya Shree Gangadhar ◽  
Balamuralidhara V ◽  
Rajeshwari S.R.

BACKGROUND Biomaterial is defined as "any substance or combination of medicine, artificial or natural origin, which can be used at any time, in whole or part by a system that controls, adds to, or restores any tissue, organ or function". ISO 10993-1: 2018 standard defines bio compliance law as "the ability of a medical device or tool to perform a selected program with the acceptable response of experts". Incompatible factors cause chemical reactions in patients, with little or no side effects. The body can respond in a sort of way after the installation of medical devices, so testing and improvement is important here. Therefore, testing and improvement in this field are important. Biocompatibility is required for any significant use of components or materials in medical devices. Inconsistent factors create negative biological responses in patients, which may have serious consequences. Biomaterials are substances utilized in medical devices, especially in applications where the device is touched, temporarily embedded, or permanently implanted within the body. Because of the significant impact of biocompatibility, many countries have imposed regulations on medical device manufacturers to meet biocompatibility specifications. Here is a brief explanation about the biocompatibility and incompatibility parameters of medical devices with a human body and its need for biocompatibility of medical devices with the human body. Medical devices have improved doctors' ability to diagnose and treat disease, which has led to significant improvements in health and quality of life. Thus, medical devices are prone to various incompatibility issues and procedures that affect the biological environment must be followed. KEY WORDS Biocompatibility, Material Interactions, Sterilization, Medical devices, Biocompatibility Testing, Incompatibility Factors.


Author(s):  
N. Sertac Artan ◽  
Reza K. Amineh

Implantable medical devices such as pacemakers, implantable cardioverter defibrillators, deep brain stimulators, retinal and cochlear implants are gaining significant attraction and growth due to their capability to monitor the health condition in real time, diagnose a particular disease, or provide treatment for a particular disease. In order to charge these devices, wireless power transfer technology is considered as a powerful means. This eliminates the need for extra surgery to replace the battery. In this chapter, some of the major implanted medical devices are reviewed. Then, various wireless power transfer configurations are reviewed briefly for charging such devices. The chapter continues with reviewing wireless power transfer configurations based on the multi-layer printed or non-printed planar spiral coils. At the end, some of the recent works related to using multi-layer planar spiral coils for safe and efficient powering of IMDs will be discussed.


Author(s):  
Brandon S. Sargent ◽  
Spencer P. Magleby ◽  
Brian D. Jensen ◽  
Larry L. Howell

This work presents two novel support systems used to help mitigate flexible device buckling during insertion such as the insertion of medical device into the body. These systems are collapsible to accommodate the changing length of the flexible device as it is inserted. They use tension in wires or geometry to provide systems with lateral stiffness used to support the device. Through modeling, the performance of these systems can be predicted and they can be designed to a desired performance. This was validated in the geometry-based support system. They provide systems with small operating volumes and part counts.


Sign in / Sign up

Export Citation Format

Share Document