scholarly journals TeV GAMMA RAYS: OBSERVATIONS VERSUS EXPECTATIONS & THEORY

2013 ◽  
Vol 53 (A) ◽  
pp. 635-640
Author(s):  
Frank Krennrich

The scope of this paper is to discuss two important questions relevant for TeV γ-ray astronomy; the pursuit to reveal the origin of cosmic rays in our galaxy, and the opacity of the universe in γ-rays. The origin of cosmic rays stipulated the field of TeV astronomy in the first place, and led to the development of the atmospheric Cherenkov technique; significant progress has been made in the last decade through the detection of several supernova remnants, the primary suspects for harboring the acceleration sites of cosmic rays. TeV γ-rays propagate mostly unhindered through the galactic plane, making them excellent probes of processes in SNRs and other galactic sources. Key results related to the SNR origin of cosmic rays are discussed. TeV γ-ray spectra from extragalactic sources experience significant absorption when traversing cosmological distances. The opacity of the universe to γ-rays above 10 GeV progressively increases with energy and redshift; the reason lies in their pair production with ambient soft photons from the extragalactic background light (EBL). While this limits the γ-ray horizon, it offers the opportunity to gain information about cosmology, i.e. the EBL intensity, physical conditions in intergalactic space, and potentially new interaction processes. Results and implications pertaining to the EBL are given.

1970 ◽  
Vol 37 ◽  
pp. 216-237
Author(s):  
James E. Felten

This is a critical review of theories of known discrete X-ray sources. The Crab is omitted, having been dealt with in Woltjer's review. Two of the identified sources, Sco X-1 and Cyg X-2, seem to be of the same sort. A binary or gas-stream model like that of Prendergast and Burbidge, with dimension R ∼ 109 cm and density n ∼ 1016 cm−3, appears reconcilable with the observed features of these sources, though much detailed work remains to be done. Neither object is yet known to be binary. Theoretical work becomes more difficult if, as appears to be the case at least for Sco X-1, the objects are optically thick due to electron scattering; this may affect the optical and X-ray spectra.The recent searches for iron lines in the X-ray spectrum of Sco X-1 are reviewed briefly. The calculations and the energy resolution are not yet good enough to make this a dependable test of models.Several possibilities are offered for explaining the excess radio flux from Sco X-1.Other theories of Sco X-1-type sources are discussed briefly. The theory of Manley and Olbert seems a little superfluous when the gas-stream theory is still in a strong position.There are serious discrepancies between X-ray and optical estimates of the distance to Sco X-1. 21-cm measurements must also be considered. The situation is reviewed, and ways out of the difficulty are discussed.Cen X-2 seems to be like Sco X-1, but several other unidentified sources have hard spectra like the Crab. It is tempting to speculate that most of the galactic sources are supernova remnants.The extended γ-ray source in the galactic plane may be the extrapolated unresolved sum of galactic X-ray sources, as suggested by Ogelman. There are several other possibilities.M87 is the only established extragalactic source. Radio, optical and X-ray observations are summarized and graphed. A power-law extrapolation to the X-ray band is far from mandatory; nevertheless the optical flux from the jet is known to be synchrotron radiation. The time-scale difficulties in the jet are described, and several theories of the survival of the optical electrons are reviewed.Processes for producing X-rays other than thermal bremsstrahlung and synchrotron radiation are listed. These other processes are characterized by low efficiency, and are likely to be unimportant in discrete sources, though several have attracted attention with reference to the diffuse background.


2009 ◽  
Vol 5 (H15) ◽  
pp. 808-808
Author(s):  
Emma de Oña-Wilhelmi

AbstractThe H.E.S.S. Galactic Plane Survey (GPS) has revealed a large number of Galactic Sources, including Pulsar Wind Nebulae (PWN), Supernova Remnants (SNRs), giant molecular clouds, star formation regions and compact binary systems, as well as a number of unidentified objects, or dark sources, for which no obvious counterparts at other wavelengths have yet been found. We will review the latest results from the GPS observations and discuss the most interesting cases.


1970 ◽  
Vol 37 ◽  
pp. 269-279 ◽  
Author(s):  
G. W. Clark ◽  
G. P. Garmire ◽  
W. L. Kraushaar

Recent observations in the X- and γ-Ray region of the electromagnetic spectrum have given strong evidence for the existence of an extragalactic intensity with a slowly steepening power law spectrum in the region 103 to 108 eV. Further data from the OSO-III high energy γ-Ray detector are in agreement with earlier published reports, and suggest that the γ-Rays from high galactic latitudes have a softer spectrum than those from the galactic plane.


1981 ◽  
Vol 94 ◽  
pp. 309-319 ◽  
Author(s):  
A. W. Wolfendale

It is shown that there is evidence favouring molecular clouds being sources of γ-rays, the fluxes being consistent with expectation for ambient cosmic rays interacting with the gas in the clouds for the clouds considered. An estimate is made of the fraction of the apparently diffuse γ-ray flux which comes from cosmic ray interactions in the I.S.M. as distinct from unresolved discrete sources. Finally, an examination is made of the possibility of gradients of cosmic ray intensity in the Galaxy.


2007 ◽  
Vol 22 (29) ◽  
pp. 2167-2174
Author(s):  
H. BARTKO

The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.


1996 ◽  
Vol 145 ◽  
pp. 333-340
Author(s):  
Richard G. Strom

Most of the supernova remnants known in the Galaxy have only been detected at radio frequencies. The reason for this is absorption in the Galactic plane at both optical and X-ray wavelengths. All available evidence suggests that the shock fronts which accompany supernova remnants accelerate enough cosmic rays to GeV energies to produce readily detectable radio emission. This is fortunate, for it enables us to study remnants throughout the Galactic disk, although existing catalogues may be anywhere from 50 to 90 % incomplete. Cosmic rays and the magnetic fields in which they gyrate are the essential ingredients for producing the synchrotron radiation which is observed at radio frequencies. Various methods for estimating magnetic field strengths can be applied to a small number of remnants, and produce values not far from those based upon equipartition between the energy contents of particles and fields. From this, the particle energy content is derived for a number of objects.


1991 ◽  
Vol 144 ◽  
pp. 377-386
Author(s):  
Reinhard Schlickeiser

The recent observations of the nonthermal properties of the halo of our Galaxy at radio and γ-ray wavelengths are summarized. Radio and γ-ray data show a similar spectral flattening with Galactic height towards the anticenter direction, which is interpreted as a cosmic-ray effect. Several theoretical explanations for the flattening of the energy spectra of the radiating cosmic-ray electrons (in the radio) and nucleons (in γ-rays) are reviewed including propagation of cosmic rays in an accelerating Galactic wind and the presence of cosmic-ray sources with flat energy spectra in the halo.


1998 ◽  
Vol 188 ◽  
pp. 273-274
Author(s):  
V.B. Bhatia ◽  
S. Mishra ◽  
N. Panchapakesan

The SAS 2 and COS B observations have established the existence of diffuse γ-rays in our Galaxy in various energy ranges. The diffuse radiation is attributed to the interaction of cosmic ray nuclei and electrons with the particles of interstellar atomic and molecular gas (via the decay of pions and bremsstrahlung, respectively). Inverse Compton scattering of interstellar photons by the high energy electrons of cosmic rays may also be contributing to this background. In addition some contribution may come from discrete sources of γ-rays.


2008 ◽  
Vol 17 (10) ◽  
pp. 1849-1858 ◽  
Author(s):  
J. M. PAREDES

The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259–63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of nonthermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) γ-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE γ-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.


2021 ◽  
Vol 648 ◽  
pp. A30
Author(s):  
W. Becker ◽  
N. Hurley-Walker ◽  
Ch. Weinberger ◽  
L. Nicastro ◽  
M. G. F. Mayer ◽  
...  

Supernova remnants (SNRs) are observable for about (6−15) × 104 yr before they fade into the Galactic interstellar medium. With a Galactic supernova rate of approximately two per century, we can expect to have of the order of 1200 SNRs in our Galaxy. However, only about 300 of them are known to date, with the majority having been discovered in Galactic plane radio surveys. Given that these SNRs represent the brightest tail of the distribution and are mostly located close to the plane, they are not representative of the complete sample. The launch of the Russian-German observatory SRG/eROSITA in July 2019 brought a promising new opportunity to explore the Universe. Here we report findings from the search for new SNRs in the eROSITA all-sky survey data which led to the detection of one of the largest SNRs discovered at wavelengths other than the radio: G249.5+24.5. This source is located at a relatively high Galactic latitude, where SNRs are not usually expected to be found. The remnant, ‘Hoinga’, has a diameter of about 4. °4 and shows a circular shaped morphology with diffuse X-ray emission filling almost the entire remnant. Spectral analysis of the remnant emission reveals that an APEC spectrum from collisionally ionised diffuse gas and a plane-parallel shock plasma model with non-equilibrium ionisation are both able to provide an adequate description of the data, suggesting a gas temperature of the order of kT = 0.1−0.02+0.02 keV and an absorbing column density of NH = 3.6−0.6+0.7 × 1020 cm−2. Various X-ray point sources are found to be located within the remnant boundary but none seem to be associated with the remnant itself. Subsequent searches for a radio counterpart of the Hoinga remnant identified its radio emission in archival data from the Continuum HI Parkes All-Sky Survey and the 408-MHz ‘Haslam’ all-sky survey. The radio spectral index α = −0.69 ± 0.08 obtained from these data definitely confirms the SNR nature of Hoinga. We also analysed INTEGRAL SPI data for fingerprints of 44Ti emission, which is an ideal candidate with which to study nucleosynthesis imprinting in young SNRs. Although no 44Ti emission from Hoinga was detected, we were able to set a 3σ upper flux limit of 9.2 × 10−5 ph cm−2 s−1. From its size and X-ray and radio spectral properties we conclude that Hoinga is a middle-aged Vela-like SNR located at a distance of about twice that of the Vela SNR, i.e. at ~500 pc.


Sign in / Sign up

Export Citation Format

Share Document