scholarly journals RELATION BETWEEN LEFT VENTRICULAR UNLOADING DURING ECMO AND DRAINAGE CATHETER SIZE ASSESSED BY MATHEMATICAL MODELING

2017 ◽  
Vol 57 (5) ◽  
pp. 367 ◽  
Author(s):  
Svitlana Strunina ◽  
Jiri Hozman ◽  
Petr Ostadal

The flow-dependent left ventricle overload is a well-known complication of the veno-arterial extracorporeal membrane oxygenation in a severe cardiogenic shock, which leads to a distension of the left ventricle and, frequently, to a severe pulmonary edema. Recently, an unloading of the left ventricle using a catheter inserted to the left ventricle and connected to the extracorporeal membrane oxygenation circuit has been proposed. The computational method was used to simulate the blood flow in the extracorporeal membrane oxygenation system with a drainage catheter incorporated to the left ventricle and connected to the inflow part of the extracorporeal membrane oxygenation circuit by a Y-shaped connector. The whole system was modelled in Modelica modelling language. The impact of various catheter sizes (from 5 Fr to 10 Fr) and extracorporeal blood flow values (from 1L/min to 5 L/min) were investigated. In our simulation model, the extracorporeal blood flow only modestly affected the value of volume that was withdrawn from the left ventricle by a catheter. Conversely, the size of the drainage catheter was the principal factor responsible for the achievement of the adequate left ventricle decompression. A 10 Fr drainage catheter, inserted into the left ventricle and connected to the venous part of the ECMO system, presents a promising solution to the unloading of the left ventricle during a extracorporeal membrane oxygenation.

2005 ◽  
Vol 15 (4) ◽  
pp. 373-378 ◽  
Author(s):  
Ronald B. Tanke ◽  
Otto Daniëls ◽  
Arno F. van Heijst ◽  
Henk van Lier ◽  
Cees Festen

Our aim was to analyze left ventricular fractional shortening during extracorporeal membrane oxygenation under the influence of changing volume loading conditions induced by a ductal left-to-right shunt. In all patients, the fractional shortening was observed using echocardiography before, during, and after bypass, irrespective of the presence or absence of the ductal left-to-right shunt. During membrane oxygenation, there was a significant decrease in fractional shortening (p less than 0.001), with no difference before and after membrane oxygenation. A greater decrease in fractional shortening was observed in the group with a ductal left-to-right shunt when compared to patients lacking the ductal shunt (p less than 0.006). The diastolic diameter of the left ventricle also increased significantly during the membrane oxygenation in those patients with left-to-right ductal shunting. Moreover, the patients with left-to-right shunting showed a very severe decreased fractional shortening, lower than 10 per cent, with significantly greater frequency (p less than 0.05) during the course of membrane oxygenation. Conclusion: An important decrease in left ventricular fractional shortening is observed during veno-arterial extracorporeal membrane oxygenation. Left-to-right shunting during bypass, as seen in the patients with patency of the arterial duct, increases the loading conditions on the left ventricle, and produces a significant increase in left ventricular diastolic dimensions. Despite the effects of volume loading produced by the ductal shunt during bypass, the decrease in fractional shortening is significantly more pronounced for these patients. Therefore, during membrane oxygenation the volume loading produced by the ductal shunt is unable to prevent a decrease in left ventricular fractional shortening.


2015 ◽  
Vol 308 (8) ◽  
pp. H921-H930 ◽  
Author(s):  
Kazuo Sakamoto ◽  
Keita Saku ◽  
Takuya Kishi ◽  
Takamori Kakino ◽  
Atsushi Tanaka ◽  
...  

Although venoarterial extracorporeal membrane oxygenation (ECMO) was developed to rescue patients with cardiogenic shock, the impact of ECMO on hemodynamics is often unpredictable and can lead to hemodynamic collapse. In this study, we developed a framework in which we incorporated ECMO into the extended Guyton's model of circulatory equilibrium and predicted hemodynamic changes in response to ECMO. We first determined the cardiac output (CO) curves of left and right heart (to generate the integrated CO curve) without ECMO in eight normal and seven dogs with left ventricular dysfunction. Using the CO curves obtained and standard parameters for the venous return surface, we predicted the circulatory equilibrium under various levels of ECMO support. The predicted total flow (native left heart flow plus ECMO flow), right atrial pressure (PRA), and left atrial pressure (PLA) matched well with those measured [total flow: coefficient of determination ( r2) = 0.99, standard error of estimate (SEE) = 5.8 ml·min−1·kg−1, PRA: r2 = 0.95, SEE = 0.23 mmHg, PLA: r2 = 0.99, SEE = 0.59 mmHg]. Lastly, we estimated the CO curves under ECMO support from minute changes in hemodynamics induced by change in ECMO. From the CO curves estimated, we predicted the circulatory equilibrium. The predicted total flow ( r2 = 0.93, SEE = 0.5 ml·min−1·kg−1), PRA ( r2 = 0.99, SEE = 0.54 mmHg), and PLA ( r2 = 0.95, SEE = 0.89 mmHg) matched reasonably well with those measured. A numerical simulation indicated that ECMO support may cause pulmonary edema, if right ventricular function is compromised. We conclude that the proposed framework may enhance the benefit and reduce the risk of ECMO support in patients with critical hemodynamic conditions.


Perfusion ◽  
2018 ◽  
Vol 34 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Philip Fernandes ◽  
Michael O’Neil ◽  
Samantha Del Valle ◽  
Anita Cave ◽  
Dave Nagpal

A 44-year-old male with ongoing chest pain and left ventricular ejection fraction <20% was transferred from a peripheral hospital with intra-aortic balloon pump placement following a non-ST-elevation myocardial infarction (STEMI). The patient underwent emergent multi-vessel coronary artery bypass grafting requiring veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) on post-operative day (POD)#9 secondary to cardiogenic shock with biventricular failure. Due to clot formation, an oxygenator change-out was necessary shortly after initiation. Following a positive heparin-induced thrombocytopenia (HIT) assay, a total circuit exchange was required to eliminate all heparin coating and argatroban was deemed the anticoagulant of choice due to acute kidney injury. On POD#24, the decision was made to implant a left ventricle assist device (LVAD) as a bridge to heart transplantation. There was difficulty achieving an activated clotting time (ACT) >400 s: multiple argatroban bolus doses were required, along with accelerated up-titration of infusion dosing. Despite maintaining an ACT >484 s, clot formation was observed in the cardiotomy reservoir prior to separation. Subsequently, the patient developed severe disseminated intravascular coagulopathy, with both intra-cardiac and intravascular thrombi, requiring massive transfusion and continuous cell saving due to severe hemorrhage post cardiopulmonary bypass (CPB). The patient received a total of 105 units of plasma, 74 units of packed red cells, 19 units of platelets, 13 bottles of 5% albumin, 6 units of cryoprecipitate and 2 doses of factor VIIa intraoperatively over the course of 24 hours. A total of 19.7 L of washed red blood cells were returned to the patient from the cell saver. With the LVAD in place, the patient developed transfusion-related acute lung injury and acute respiratory distress syndrome with right ventricular dysfunction requiring VA ECMO once again. On POD#30, ECMO was discontinued and the patient was discharged from the intensive care unit (ICU) on POD 66. After a very complex post-operative stay with numerous surgeries and extensive rehabilitation, the patient was discharged home with the LVAD on POD#112.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Faron ◽  
Stefan Kreyer ◽  
Alois M. Sprinkart ◽  
Thomas Muders ◽  
Stefan F. Ehrentraut ◽  
...  

AbstractImpaired skeletal muscle quality is a major risk factor for adverse outcomes in acute respiratory failure. However, conventional methods for skeletal muscle assessment are inapplicable in the critical care setting. This study aimed to determine the prognostic value of computed tomography (CT) fatty muscle fraction (FMF) as a biomarker of muscle quality in patients undergoing extracorporeal membrane oxygenation (ECMO). To calculate FMF, paraspinal skeletal muscle area was obtained from clinical CT and separated into areas of fatty and lean muscle based on densitometric thresholds. The cohort was binarized according to median FMF. Patients with high FMF displayed significantly increased 1-year mortality (72.7% versus 55.8%, P = 0.036) on Kaplan–Meier analysis. A multivariable logistic regression model was built to test the impact of FMF on outcome. FMF was identified as a significant predictor of 1-year mortality (hazard ratio per percent FMF, 1.017 [95% confidence interval, 1.002–1.033]; P = 0.031), independent of anthropometric characteristics, Charlson Comorbidity Index, Simplified Acute Physiology Score, Respiratory Extracorporeal Membrane Oxygenation Survival Prediction Score, and duration of ECMO support. To conclude, FMF predicted 1-year mortality independently of established clinical prognosticators in ECMO patients and may have the potential to become a new muscle quality imaging biomarker, which is available from clinical CT.


Perfusion ◽  
2021 ◽  
pp. 026765912110339
Author(s):  
Shek-yin Au ◽  
Ka-man Fong ◽  
Chun-Fung Sunny Tsang ◽  
Ka-Chun Alan Chan ◽  
Chi Yuen Wong ◽  
...  

Introduction: The intra-aortic balloon pump (IABP) and Impella are left ventricular unloading devices with peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO) in place and later serve as bridging therapy when VA-ECMO is terminated. We aimed to determine the potential differences in clinical outcomes and rate of complications between the two combinations of mechanical circulatory support. Methods: This was a retrospective, single institutional cohort study conducted in the intensive care unit (ICU) of Queen Elizabeth Hospital, Hong Kong. Inclusion criteria included all patients aged ⩾18 years, who had VA-ECMO support, and who had left ventricular unloading by either IABP or Impella between January 1, 2018 and October 31, 2020. Patients <18 years old, with central VA-ECMO, who did not require left ventricular unloading, or who underwent surgical venting procedures were excluded. The primary outcome was ECMO duration. Secondary outcomes included length of stay (LOS) in the ICU, hospital LOS, mortality, and complication rate. Results: Fifty-two patients with ECMO + IABP and 14 patients with ECMO + Impella were recruited. No statistically significant difference was observed in terms of ECMO duration (2.5 vs 4.6 days, p = 0.147), ICU LOS (7.7 vs 10.8 days, p = 0.367), and hospital LOS (14.8 vs 16.5 days, p = 0.556) between the two groups. No statistically significant difference was observed in the ECMO, ICU, and hospital mortalities between the two groups. Specific complications related to the ECMO and Impella combination were also noted. Conclusions: Impella was not shown to offer a statistically significant clinical benefit compared with IABP in conjunction with ECMO. Clinicians should be aware of the specific complications of using Impella.


Sign in / Sign up

Export Citation Format

Share Document