scholarly journals Supersoft X-Ray Source CAL 83: A Possible AE Aqr-like System

2015 ◽  
Vol 2 (1) ◽  
pp. 94-98 ◽  
Author(s):  
A. Odendaal ◽  
P. J. Meintjes ◽  
P. A. Charles ◽  
A. F. Rajoelimanana

CAL83 is a close binary supersoft X-ray source in the Large Magellanic Cloud. A ~67 s periodicity detected in supersoft X-rays is most probably associated with the spin period of a highly spun-up white dwarf (WD). The variability in the period is ascribed to the obscuration of the WD by the hydrogen burning envelope surrounding it, rotating with a period that is close to, but not quite synchronized with, the WD rotation period. Optical spectra obtained with SALT exhibit accretion disc emission lines with broad wing structures and P Cyg profiles, indicating mass outflows. Timing analysis of photometrical observations performed at the South African Astronomical Observatory (SAAO) revealed variable signals at ≤1 mHz which are thought to be associated with quasi-periodic oscillations from an accretion disc. The short spin period inferred for CAL83 can be the result of spin-up by accretion disc torques during a long mass transfer history, placing this source on a similar evolutionary track as the cataclysmic variable AE Aqr.

Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


1987 ◽  
Vol 92 ◽  
pp. 516-518
Author(s):  
Krishna M.V. Apparao ◽  
S.P. Tarafdar

Several Be stars are identified with bright X-ray sources. (Rappaport and Van den Heuvel, 1982). The bright X-ray emission and observed periodicities indicate the existence of compact objects (white dwarfs, neutron stars or black holes) near the Be stars. A prime example is the brightest X-ray source A0538-66 in LMC, which contains a neutron star with a rotation period of 59 ms. Apparao (1985) explained the X-ray emission, which occurs in periodic flares, by considering an inclined eccentric orbit for the neutron star around the assumed Be-star. The neutron star when it enters a gas ring (around the Be-star) accreting matter giving out X-rays.The X-ray emission from the compact objects, when the gas ring from the Be-star envelopes the objects, has interesting consequences. The X-ray emission produces an ionized region (compact object Stromgren sphere or COSS) in the gas surrounding the compact object (CO).


2019 ◽  
Vol 491 (4) ◽  
pp. 5172-5178 ◽  
Author(s):  
E Kara ◽  
C Pinto ◽  
D J Walton ◽  
W N Alston ◽  
M Bachetti ◽  
...  

ABSTRACT Ultraluminous X-ray sources (ULXs) provide a unique opportunity to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated variability between different energy bands can provide insights into the causal connection between different emitting regions. We present a spectral-timing analysis of NGC 1313 X-1 from a recent XMM–Newton campaign. The spectra can be decomposed into two thermal-like components, the hotter of which may originate from the inner accretion disc, and the cooler from an optically thick outflow. We find correlated variability between hard (2–10 keV) and soft (0.3–2 keV) bands on kilosecond time-scales, and find a soft lag of ∼150 s. The covariance spectrum suggests that emission contributing to the lags is largely associated with the hotter of the two thermal-like components, likely originating from the inner accretion flow. This is only the third ULX to exhibit soft lags. The lags range over three orders of magnitude in amplitude, but all three are ∼5–20 per cent of the corresponding characteristic variability time-scales. If these soft lags can be understood in the context of a unified picture of ULXs, then lag time-scales may provide constraints on the density and extent of radiatively driven outflows.


2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


1991 ◽  
Vol 148 ◽  
pp. 99-100
Author(s):  
You-Hua Chu ◽  
Mordecai-Mark Mac Low

We find diffuse X-ray emission not associated with known SNRs in seven LMC HII complexes. All, except 30 Dor, have simple ring morphologies, indicating shell structures. Assuming these are superbubbles, we find the X-ray luminosity expected from their hot interiors to be an order of magnitude lower than the observed value. SNRs close to the center of a superbubble add very little emission, but we calculate that off-center SNRs hitting the ionized shell could explain the observed emission.


1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


2020 ◽  
Vol 497 (3) ◽  
pp. 3234-3250 ◽  
Author(s):  
Diego A Farias ◽  
Alejandro Clocchiatti ◽  
Tyrone E Woods ◽  
Armin Rest

ABSTRACT Supersoft X-rays sources (SSSs) have been proposed as potential Type Ia supernova (SN Ia) progenitors. If such objects are indeed persistently X-ray luminous and embedded in sufficiently dense interstellar medium (ISM), they will be surrounded by extended nebular emission. These nebulae should persist even long after an SN Ia explosion, due to the long recombination and cooling times involved. With this in mind, we searched for nebular [O iii] emission around four SSSs and three SNRs in the Large Magellanic Cloud, using the 6.5-m Baade telescope at Las Campanas Observatory and the imacs camera. We confirm that, out of the four SSS candidates, only CAL 83 can be associated with an [O iii] nebula. The [O iii] luminosity for the other objects is constrained to ≲17 per cent of that of CAL 83 at 6.8 pc from the central source. Models computed with the photoionization code cloudy indicate that either the ISM densities in the environments of CAL 87, RX J0550.0-7151, and RX J0513.9-6951 must be significantly lower than surrounding CAL 83 or the average X-ray luminosities of these sources over the last ≲10  000 yr must be significantly lower than presently observed, in order to be consistent with the observed luminosity upper limits. For the three SNRs we consider (all with ages <1000 yr), our [O iii] flux measurements together with the known surrounding ISM densities strongly constrain the ionizing luminosity of their progenitors in the last several thousand years, independent of the progenitor channel.


10.14311/1312 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
V. Grinberg ◽  
I. Kreykenbohm ◽  
F. Fürst ◽  
J. Wilms ◽  
K. Pottschmidt ◽  
...  

INTEGRAL is one of the few instruments capable of detecting X-rays above 20 keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from a comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii_lc_extract) and from calculating the pixel illuminated fraction (ii_light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii light produces meaningful results, although the overall variance of the lightcurves is not preserved.


Author(s):  
Tsubasa Tamba ◽  
Aya Bamba ◽  
Hirokazu Odaka ◽  
Teruaki Enoto

Abstract X-ray observations play a crucial role in understanding the emission mechanism and relevant physical phenomena of magnetars. We report on X-ray observations made in 2016 of a young magnetar, SGR 1900+14, which is famous for a giant flare in 1998 August. Simultaneous observations were conducted with XMM-Newton and NuSTAR on 2016 October 20 with 23 and 123 ks exposures, respectively. The NuSTAR hard X-ray coverage enabled us to detect the source up to 70 keV. The 1–10 keV and 15–60 keV fluxes were $3.11(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$ and $6.8(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$, respectively. The 1–70 keV spectra were fitted well by a blackbody plus power-law model with a surface temperature of $kT=0.52(2) \, {\rm keV}$, a photon index of the hard power-law of Γ = 1.21(6), and a column density of $N_{\,\rm H}=1.96(11)\times 10^{22} \, {\rm cm^{-2}}$. Compared with previous observations with Suzaku in 2006 and 2009, the 1–10 keV flux showed a decrease by 25%–40%, while the spectral shape did not show any significant change with differences of kT and NH being within 10% of each other. Through timing analysis, we found that the rotation period of SGR 1900+14 on 2016 October 20 was $5.22669(3) \, {\rm s}$. The long-term evolution of the rotation period shows a monotonic decrease in the spin-down rate $\dot{P}$ lasting for more than 15 yr. We also found characteristic behavior of the hard-tail power-law component of SGR 1900+14. The energy-dependent pulse profiles vary in morphology with a boundary of 10 keV. The phase-resolved spectra show the differences between photon indices (Γ = 1.02–1.44) as a function of the pulse phase. Furthermore, the photon index is positively correlated with the X-ray flux of the hard power-law component, which could not be resolved by the previous hard X-ray observations.


1996 ◽  
Vol 158 ◽  
pp. 185-186
Author(s):  
D. A. H. Buckley

TX Col (1H0547–407; Porb = 5.72 h) is an intermediate polar (IP) with spin and synodic (beat) periods of 1911s and 2106 s respectively (Buckley & Tuohy 1989). EXOSAT observations (Tuohy et al. 1986) showed the beat period dominated at higher energies (ME; 1… 9keV), while the spin period was stronger in softer X-rays (LE1; 0.1… IkeV). The high flux level, and pulse fraction (>70%), of the soft X-rays were unique in an IP at that time. Now three other IPs, recently discovered from the ROSAT survey, have been found to show a true separate soft X-ray component, similar to the polars (Motch & Haberl 1994).The strength of the synodic X-ray period in TX Col was, until the recent discovery of the variable polarised IP, RX J1712.6–2414 (Buckley et al. 1995), unique. This was taken as evidence for direct accretion onto the magnetosphere (e.g. Mason, Rosen & Hellier 1988), through a component of the accretion stream overflowing the disc (Hellier 1992).


Sign in / Sign up

Export Citation Format

Share Document