scholarly journals FEASIBILITY STUDY OF MICRO-LATTICE STRUCTURES BY MULTIPHOTON LITHOGRAPHY

2019 ◽  
Vol 25 ◽  
pp. 83-88
Author(s):  
Markus Wimmer ◽  
Zoltan Major

The paper describes the possibilities of additive manufacturing with multiphoton lithography. The basis of this technology is that a laser beam (with a certain wavelength) is fired into the mixture of a monomer and a photo-initiator. When the energy of the laser is high enough, the latter acts as a catalyser for the polymerization of the monomer compound. This study focuses on the influences of certain parameters of the multiphoton lithography process. One of the important aspects is the choice of the solvent for the post processing. In sequence to the solvent problem, the influence of the layer height is examined. Furthermore the limits and possibilities of the setup in use are investigated. As an example the differences in fabrication with the laser firing with "constant frequency" and "constant density" were subject of this investigation. The second goal of the study was to compare three different structures consisting of periodically repeating elements, scaled in size and number of elements per side.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3482 ◽  
Author(s):  
Haorui Zhang ◽  
Junjin Huang ◽  
Changmeng Liu ◽  
Yongsheng Ma ◽  
Yafeng Han ◽  
...  

Lattice structures have drawn considerable attention due to their superior mechanical properties. However, the existing fabrication methods for lattice structures require complex procedures, as they have low material utilization and lead to unreliable node connections, which greatly restricts their application. In this work, wire arc additive manufacturing is used to fabricate large-scale lattice structures efficiently, without any air holes between rods and panels. The principle and the process of fabricating the rods were analyzed systematically. The influence of the two most important parameters, including heat input and preset layer height, is disclosed. Through optical microscopy, the microstructure of the fabricated steel rods is found to consist of dendritic austenite and skeletal ferrite. The tensile strength of the rods can reach 603 MPa, and their elongation reaches 77%. These experimental results demonstrated the feasibility of fabricating lattice structures using wire arc additive manufacturing.


2021 ◽  
Vol 113 (11-12) ◽  
pp. 3599-3612
Author(s):  
Chen Zhang ◽  
Abhishek Banerjee ◽  
Alison Hoe ◽  
Achutha Tamraparni ◽  
Jonathan R. Felts ◽  
...  

Author(s):  
Arash Soltani-Tehrani ◽  
Rakish Shrestha ◽  
Nam Phan ◽  
Mohsen Seifi ◽  
Nima Shamsaei

Author(s):  
Anil Saigal ◽  
John R. Tumbleston ◽  
Hendric Vogel

In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the mechanical behavior of octahedral, octet, vertex centroid, dode, diamond, rhombi octahedron, rhombic dodecahedron and solid lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. The compressive stress-strain behavior of the lattice structures observed is typical of cellular structures which include a region of nominally elastic response, yielding, plastic strain hardening to a peak in strength, followed by a drop in flow stress to a plateau region and finally rapid hardening associated with contact of the deformed struts with each other as part of densification. It was found that the elastic modulus and strength of the various lattice structured materials are proportional to each other. In addition, it was found that the octahedral, octet and diamond lattice structures are amongst the most efficient based on the measured specific stiffness and specific strength.


MRS Advances ◽  
2017 ◽  
Vol 2 (24) ◽  
pp. 1315-1321 ◽  
Author(s):  
Daniela Espinosa-Hoyos ◽  
Huifeng Du ◽  
Nicholas X. Fang ◽  
Krystyn J. Van Vliet

ABSTRACTMaterials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution.


Sign in / Sign up

Export Citation Format

Share Document