scholarly journals Aviation Technology Life Cycle Management: Importance for Aviation Companies, Aerospace Industry Organizations and Relevant Stakeholders

2017 ◽  
Vol 5 (2) ◽  
pp. 15 ◽  
Author(s):  
Stanislav Szabo ◽  
Ivan Koblen

<p align="LEFT">The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general) and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC) is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.). Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”), written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print). The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.</p>

Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


Author(s):  
Wai M. Cheung ◽  
Linda B. Newnes ◽  
Antony R. Mileham ◽  
Robert Marsh ◽  
John D. Lanham

This paper presents a review of research in the area of life cycle costing and offers a critique of current commercial cost estimation systems. The focus of the review is on relevant academic research on life cycle cost from 2000 onwards. In addition to this a comparison of the current cost estimation systems is presented. Using the review findings and industrial investigations as a base, a set of mathematical representations for design and manufacturing costs and the introduction of the critical factors is proposed. These are considered in terms of the operational, maintenance and disposal costs to create a method for ascertaining the life cycle cost estimate for complex products. This is presented using as an exemplar, research currently being undertaken in the area of low volume and long life electronic products in the UK defence sector. The benefit of the method proposed is that it aims to avoid the inflexibility of traditional approaches which usually require historical and legacy data to support the cost estimation processes.


2014 ◽  
Vol 903 ◽  
pp. 408-413 ◽  
Author(s):  
FRESELAM Mulubrhan ◽  
Ainul Akmar Mokhtar ◽  
Masdi Muhammad

This paper presents a mathematical model to estimate the life cycle cost (LCC) of heat exchanger and pump. Maintenance cost, down time cost and acquisition costs are calculated. The main uncertainty in calculating these costs are prediction of number of failure and cumulative down time. Number of failure is determined using failure and repair time density function. According to the characteristic that the cumulative failure probability observed, a Weibull distribution model is used. The scale and shape parameters of the Weibull are extracted from the published data. The results of the study show that 71.3% loss in the reliability of heat exchanger and 34.2% reliability loss in pump could lead to 66.2 % increment of the total cost. The reliability of the system decreases because of number of failures will increase each year, and this failure leads to unavailability of the system.Therefore in order to achieve higher system effectiveness and reduce the total LCC, the reliability of the systems need to be increased through proper maintenance policies and strategies. The results of the study could assist the managers to make decision with high degree of accuracy.


Author(s):  
Maurice Hartey ◽  
Thomas Bodman ◽  
Arlene Korn

Maintenance, especially in a Marine environment, is continuous and costly. Life Cycle Management of a Marine Gas Turbine system encompasses many costs, of which repair parts, labor and equipment downtime associated with failures and maintenance are a significant portion. In fact, people (labor) make up the largest component of overall maintenance costs. Investing in people the largest cost driver to life cycle cost has a direct return in the long run, in terms of maintenance effectiveness and efficiencies. Applying and reinforcing knowledge and skills in a maintenance environment translates to improved reliability outcomes, longer operating time, fewer parts needs, and ultimately costs savings. However, given today’s constrained fiscal environment, the value of spending money for training rather than buying more parts or applying more maintenance, may not appear obvious. Such thinking is short sighted, and ultimately leads to reduced reliability and increased maintenance in the long run. This paper will explore these areas, and recommend how training programs can be effective predictive, proactive and responsive.


2016 ◽  
Vol 4 (2) ◽  
pp. 149-155
Author(s):  
Allen Blash ◽  
William Butler ◽  
Lindy Clark ◽  
Kyle Fleming ◽  
LTC Jennifer Kasker

In order to make the best use of the defense spending budget, it is critical that the Department of Defense (DoD) accurately predict the Research, Development, Test and Evaluation (RDT&E), Procurement, and Operation and Support (O&S) costs down to the third level of the Work Breakdown Structure for Major Defense Acquisition Project (MDAP) wheeled or tracked vehicles. This research utilizes historical data, extracted from government databases, to develop cost estimating relationships (CERs) that predict the life cycle cost of wheeled and tracked vehicles based on attributes. This research can also be leveraged for defense acquisition programs across the DoD portfolio. The model will be integrated into a tradespace analysis tool, ERS & CREATE-GV, which was developed by ERDC to predict the cost of each alternative created in the tradespace.


2019 ◽  
Vol 11 ◽  
pp. 184797901882504 ◽  
Author(s):  
Guido JL Micheli ◽  
Paolo Trucco ◽  
Yasmine Sabri ◽  
Mauro Mancini

This literature-grounded research contributes to a deeper understanding of modularization as a system life cycle management strategy, by providing a comprehensive view of its key barriers, drivers, possible mechanisms of implementation and impact. This comprehensive view, arranged into a decision-making–driven ontology, enables a decision maker to systematically identify modularization implementation opportunities in different industrial and service domains. The proposed ontology transforms modularization into a fully operationalizable strategy and contributes to a paradigm shift in the understanding of modularization, from a pure design option (i.e. modularity) to a fully strategic choice that, by nature, impacts on many of the system’s life cycle phases and involves a number of stakeholders.


2021 ◽  
pp. 1-4
Author(s):  
Heinz P. Bloch ◽  
Allan R. Budris

Author(s):  
Travis Moody ◽  
Robert Provine ◽  
Samantha Todd ◽  
Nicholas Tyler ◽  
Thomas R. Ryan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document