Uncertainty of Forested Wetland Maps Derived from Aerial Photography

2020 ◽  
Vol 86 (10) ◽  
pp. 609-617
Author(s):  
Stephen P. Prisley ◽  
Jeffery A. Turner ◽  
Mark J. Brown ◽  
Erik Schilling ◽  
Samuel G. Lambert

Forested wetlands (FWs) are economically and environmentally important, so monitoring of change is done using remote sensing by several U.S. federal programs. To better understand classification and delineation uncertainties in FW maps, we assessed agreement between National Wetlands Inventory maps based on aerial photography and field determinations at over 16 000 Forest Inventory and Analysis plots. Analyses included evaluation of temporal differences and spatial uncertainty in plot locations and wetland boundaries. User's accuracy for the wetlands map was 90% for FW and 68% for nonforested wetlands. High levels of false negatives were observed, with less than 40% of field-identified wetland plots mapped as such. Epsilon band analysis indicated that if delineation of FW boundaries in the southeastern U.S. met the data quality standards (5 meters), then the area within uncertainty bounds accounts for 15% to 30% of estimated FW area.

2021 ◽  
Author(s):  
◽  
Tapuwa Marapara

<p>During the last two decades there has been increasing interest in the role of forests and wetlands as flood mitigating tools due to growing concerns regarding the sustainability of many traditional engineering flood defences such as dykes, sea walls and dams. In forests, the role is facilitated by the interaction between trees, soil and water. Specifically trees reduce surface runoff and prevent flooding through increased evapotranspiration and canopy interception and enhance physical and hydraulic properties of soil that are critical for the absorption and retention of flood waters by the soil. It is increasingly realised that the answer to flood mitigation is not a blanket recommendation to “plant trees”. This is because the role of trees varies spatially and temporally as a function of climate, topography, rainfall properties, soil type and condition, catchment scale and geology, among others. For example, where trees are present in wetlands, particularly forested wetlands, the mechanisms by which trees interact with soil and water are similar to that in forests but because of a high water table, the impact of trees may be reduced. Therefore, the mere presence of forests and forested wetlands will not necessarily deliver flood risk management.  The purpose of this study was to explore the effectiveness of trees as flood mitigating tools under various bio-geo climatic factors in forests and forested wetland environments. Three forms of investigation were followed to fulfil this purpose.  A detailed literature review was carried out to assess the role of trees and forests as flood mitigation tools under changing climate, topography, species type, rainfall properties, soil type and condition, catchment scale and geology. A field experiment was carried out to collect data and analyse the effect of trees on soil physical and hydraulic properties that include bulk density, saturated hydraulic conductivity, soil organic carbon, soil moisture content, matric potential and soil moisture retention in a previously forested wetland undergoing restoration in New Zealand. A spatially explicit decision support tool, the Land Use Capability Indicator (LUCI) was then used to determine appropriate areas where intervention can be targeted to optimise the role of trees as flood mitigating tools in previously forested wetlands undergoing restoration.  The detailed review identified a major data gap in the role of trees under hydric conditions (high water table), along with uncertainties on their effectiveness in large catchments (>˜40 km²) and in extreme rainfall events. The field experiment provided the first set of soil hydrology data from an ephemeral wetland in New Zealand showing the benefits of newly established trees in improving hydraulic conductivity of soils. The soil hydrology data is a useful baseline for continuous monitoring of the forested wetlands undergoing restoration. The use of the Land Use Capability Indicator was its first application for the optimisation of flood mitigation in a forested wetland. Its suggested target areas are not necessarily conducive for survival of some tree species, although if suitable species are established, flood risk mitigation could be maximised. Further research on what native species are best for what conditions and in what combinations is recommended, to increase survival in the proposed target areas.</p>


2020 ◽  
Vol 50 (12) ◽  
pp. 1333-1339
Author(s):  
Tegan Padgett ◽  
Yolanda F. Wiersma

Forested wetlands provide ecosystem services and often support elevated levels of biodiversity and rare species. However, forested wetlands are understudied and face threats such as logging and land conversion. Epiphytic lichens are abundant in forested wetlands and may be useful to help delineate microhabitats across wetland–upland gradients. We investigated epiphytic macrolichen richness, diversity, and community composition in 15 sites in the Avalon Forest Ecoregion, Newfoundland, Canada. Within each site, we set up three parallel 40 m transects in (i) the forested wetland, (ii) the ecotone, and (iii) the upland forest. Along each transect, we selected five balsam fir (Abies balsamea (L.) Mill.) trees 10 m apart and surveyed for macrolichens on the lower bole. We collected data on tree height and tree diameter at breast height, which differed significantly among forest types. We also collected data on tree age and canopy cover, which did not differ significantly among forest types. Contrary to hypotheses suggesting that biodiversity is highest in ecotones, we found that mean macrolichen richness was significantly higher in wetlands, lower in the ecotones, and lowest in upland forests, and macrolichen diversity followed a similar pattern but with no significant difference among groups. Macrolichen community composition significantly differed among wetlands, ecotones, and upland forests. A lichen of conservation concern, Erioderma pedicellatum (Hue) P.M. Jørg., was detected primarily in forested wetlands, highlighting wetlands as key habitats for rare epiphytic macrolichens.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8903
Author(s):  
Nate Hough-Snee

Background Forested wetlands support distinct vegetation and hydrology relative to upland forests and shrub-dominated or open water wetlands. Although forested wetland plant communities comprise unique habitats, these ecosystems’ community structure is not well documented in the U.S. Pacific Northwest. Here I surveyed forested wetland vegetation to identify changes in community composition and structure across an elevation gradient that corresponds to flooding stress, asking: (1) How do forested wetland plant communities change across an elevation gradient that corresponds to flood frequency and duration? (2) At what relative elevations do different plant species occur within a wetland? Methods I measured overstory tree basal area and structure and understory vascular plant composition in three zones: wetland buffers (WB) adjacent to the wetland, an upper wetland (UW) extent, and a lower wetland (LW) extent, surveying individual trees’ root collar elevation relative to the wetland ordinary high-water mark (OHWM). I estimated understory plant species abundance in sub-plots and surveyed these plots’ height above the OHWM. I used non-metric multidimensional scaling ordination to identify patterns in vegetation communities relative to wetland elevation, and tested for compositional differences between the WB, UW and LW zones using PERMANOVA. I calculated overstory and understory indicator species for each wetland zone using indicator species analysis. Results Forest overstory composition changed across the elevation gradient, with broad-leaved trees occupying a distinct hydrologic niche in low-lying areas close to the OHWM. Conifer species occurred higher above the OHWM on drier microsites. Pseudotsuga menziesii (mean elevation = 0.881 m) and Tsuga heterophylla (mean elevation = 1.737 m) were overstory indicator species of the WB, while Fraxinus latifolia (mean elevation = 0.005 m) was an overstory indicator for the upper and lower wetland. Understory vegetation differed between zones and lower zones’ indicator species were generally hydrophytic species with adaptations that allow them to tolerate flooding stress at lower elevations. Average elevations above the OHWM are reported for 19 overstory trees and 61 understory plant species. By quantifying forested wetland plant species’ affinities for different habitats across an inundation gradient, this study illustrates how rarely flooded, forested WB vegetation differs from frequently flooded, LW vegetation. Because common management applications, like restoring forested wetlands and managing wetland responses to forest harvest, are both predicated upon understanding how vegetation relates to hydrology, these data on where different species might establish and persist along an inundation gradient may be useful in planning for anticipated forested wetland responses to restoration and disturbance.


Author(s):  
Karen Amanda Harper ◽  
Logan Gray ◽  
Natasha Dazé Querry

Forested wetlands are an integral but understudied part of heterogeneous landscapes in Atlantic Canada, although they are known to provide habitat for species at risk. Our objectives were to explore patterns of forest structure across edges between forested wetland and upland forest, to locate changes in vegetation structure and to assess multivariate relationships in vegetation structure. Our study sites were in temperate (Acadian) forested wetland landscapes. We sampled trees and recorded canopy cover every 20 m along 120 m long transects. We estimated the cover of trees, saplings, shrubs in three height classes, Sphagnum, other bryophytes, lichens, graminoids, ferns and forbs in contiguous 1 x 1 m quadrats. We calculated structural diversity using the Shannon index and used wavelet analysis to assess spatial patterns. We found few clear patterns except for lower tree structural diversity at the edge of forested wetlands. Structural diversity was not a reliable measure for distinguishing forested wetland from upland forest. Forested wetlands are an integral part of many forested landscapes in Atlantic Canada but their detection and differentiation from surrounding ecosystem can be difficult. Policy should err on the side of caution when mapping forested wetlands and include them in wetland protection.


Sign in / Sign up

Export Citation Format

Share Document