scholarly journals Critical Chloride Corrosion Threshold of Galvanized Reinforcing Bars

2009 ◽  
Vol 106 (2) ◽  
2004 ◽  
Vol 45 (4) ◽  
pp. 216-221
Author(s):  
Takahiko SASAKI ◽  
Tohru IIJIMA ◽  
Katsuya KOBAYASHI

2021 ◽  
Vol 28 (1) ◽  
pp. 555-567
Author(s):  
Wioletta Raczkiewicz

Abstract Concrete with the addition of polypropylene fibres is more cohesive and has better adhesion, deformability and tightness because the fibres “bind” the concrete matrix together and prevent large pores from forming in the concrete mix and limit the formation and spread of shrinkage cracks. Therefore, it can be assumed that polypropylene fibres affect the effectiveness of the concrete cover as a layer protecting steel bars against corrosion. This article presents the results of tests allowing us to estimate the effect of addition of polypropylene fibres on the reduction of reinforcing bars corrosion in concrete caused by the action of chlorides. Evaluation of the degree of corrosion of the reinforcement was analysed using the electrochemical polarisation galvanostatic pulse technique. The use of such a method allowed for the quantitative estimation of the effect of the addition of polypropylene fibre on the reduction of corrosion activity of the reinforcement in concrete.


2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


Sign in / Sign up

Export Citation Format

Share Document