scholarly journals Post-installed Reinforcing Bars – Requirements for their Reliable Use

Author(s):  
Werner Fuchs ◽  
Jan Hofmann
Keyword(s):  
2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


1979 ◽  
Vol 31 (106) ◽  
pp. 49-52
Author(s):  
D. J. Evans ◽  
L. A. Clark ◽  
F. A. Noor ◽  
J. Goodman

2006 ◽  
Vol 41 (10) ◽  
pp. 1394-1405 ◽  
Author(s):  
Camille A. Issa ◽  
Antoine Nasr

2011 ◽  
Vol 94-96 ◽  
pp. 543-546
Author(s):  
Ning Zhang ◽  
Ai Zhong Lu ◽  
Yun Qian Xu ◽  
Pan Cui

Direct pull-out tests were performed to evaluate the bond performance of glass fiber-reinforced polymer (GFRP) reinforcing bars in cement mortar. Specimens with different bar diameters and different grouted lengths (i.e., 5d, 10d and 15d, d is the diameter of bars) are prepared for the pull-out tests. For comparison, specimens with plain aluminium alloy bars (AAB) were tested as well. The result shows that the average bond stress between plain aluminium alloy bars and cement is much smaller than that between the deformed GFRP bars and cement; thin GFRP bars tended to have larger average bond stress; the shorter the grouted length, the smaller the maximum average bond stress. Only part of grouted length undertakes the bond stress and the length depends on the shear modulus of GFRP and the surrounding material.


Sign in / Sign up

Export Citation Format

Share Document