scholarly journals Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes

2021 ◽  
Vol 28 (1) ◽  
pp. 555-567
Author(s):  
Wioletta Raczkiewicz

Abstract Concrete with the addition of polypropylene fibres is more cohesive and has better adhesion, deformability and tightness because the fibres “bind” the concrete matrix together and prevent large pores from forming in the concrete mix and limit the formation and spread of shrinkage cracks. Therefore, it can be assumed that polypropylene fibres affect the effectiveness of the concrete cover as a layer protecting steel bars against corrosion. This article presents the results of tests allowing us to estimate the effect of addition of polypropylene fibres on the reduction of reinforcing bars corrosion in concrete caused by the action of chlorides. Evaluation of the degree of corrosion of the reinforcement was analysed using the electrochemical polarisation galvanostatic pulse technique. The use of such a method allowed for the quantitative estimation of the effect of the addition of polypropylene fibre on the reduction of corrosion activity of the reinforcement in concrete.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Akter Hosen ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam

Nowadays, the use of near surface mounted (NSM) technique strengthening reinforced concrete (RC) structural members is going very popular. The failure modes of NSM strengthened reinforced concrete (RC) beams have been shown to be largely due to premature failure such as concrete cover separation. In this study, CFRP U-wrap end anchorage with CFRP fabrics was used to eliminate the concrete cover separation failure. A total of eight RC rectangular beam specimens of 125 mm width, 250 mm depth, and 2300 mm length were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM steel bars and the remaining four specimens were strengthened with NSM steel bars together with the U-wrap end anchorage. The experimental results showed that wrapped strengthened beams had higher flexural strength and superior ductility performance. The results also show that these beams had less deflection, strain, crack width, and spacing.


2011 ◽  
Vol 82 ◽  
pp. 86-91 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Nicoletta Tesio

In this paper the preliminary results of the tensile behavior of reinforced steel in a large range of strain rates are presented. Tensile testing at several strain rates, using different experimental set-ups, was carried out. For the quasi-static tests a universal electromechanical testing machine with the maximum load-bearing capacity of 50 kN was used, while for the intermediate and high-strain rate regimes a hydro-pneumatic apparatus and a JRC-Split Hopkinson Tensile Bar respectively were used. The target strain rates were set at the following five levels: 10-3, 30, 250, 500, and 1000 1/s. The specimens used in this research were round samples having 3mm in diameter and 5mm of gauge length obtained from reinforcing bars. Finally, the material parameters for Cowper-Symonds and Johnson-Cook models were determined.


2018 ◽  
Vol 149 ◽  
pp. 01022 ◽  
Author(s):  
Khadra Bendjillali ◽  
Mohamed Chemrouk

The valorisation of industrial waste in the field of construction became a very interesting axis of research from scientific, economic and environmental point of view. We have conducted this work to study the effect of the addition of polypropylene fibres waste on the mechanical behaviour of reinforced concrete beams subjected to a simple flexural loading, with and without transversal reinforcement. The used fibres are coming from the waste of the fabrication of domestic brushes and sweeps; they have an average diameter of 0.47 mm and a length between 40 and 60 mm. Two weight dosages of fibres are used, 0.25 and 0.5 %. The experimental results showed that the incorporation of polypropylene fibres waste into the concrete affects negatively its workability, but its flexural and compressive strength are improved. The fibers have presented a significant contribution on the shear behavior and the cracking of beams, particularly in absence of transversal bars. The waste used in this work as fibrous reinforcement has not only increased the ductility of reinforced concrete beams, but it have also provided a perfect cracking distribution on the concrete surface and it has participated in a considerable way in the reduction of cracks number and dimensions, which allows to ensure the material durability and then the structure longevity. The reinforcement of concrete beams with 0.5 % of polypropylene fibers waste with a minimal steel bars can ensure an excellent mechanical behavior in shear, as in flexion.


2013 ◽  
Vol 790 ◽  
pp. 120-124
Author(s):  
Zhi Hua Li ◽  
Xiao Zu Su

Fourting concrete beams reinforced with 500MPa longitudinal steel bars, of which 6 with skin reinforcement and 8 without skin reinforcement, were tested under two-point symmetrical concentrated static loading to investigate their crack patterns. Crack distributions in constant moment region of beams are compared. The propagation of side cracks along the beam depth is obtained. The results of this study indicate that the concrete cover of longitudinal tensile steel bars and the spacing of skin reinforcement has significant effect on crack distributions; substantial crack control in beams can be achieved if the spacing of skin reinforcement is limited to certain critical values. The curve of d-w(d is the distance between observation points of side cracks and tension face of beams, w refers to crack width at observation points) is approximately characterized by a zig-zag shape and concave-left near longitudinal tensile steel bars.


Author(s):  
Pinta Astuti ◽  
◽  
Khalilah Kamarulzaman ◽  
Hidenori Hamada ◽  
◽  
...  

Investigation of deterioration progress in marine structures without destroying them is crucial as early detection of damage before applying the suitable remedial measures. This study presents a series of non-destructive assessment on a 44-year-old naturally corroded RC structure exposed to marine tidal environments using observation of defective appearances and electrochemical tests. The visual observation was conducted by inspecting the corrosion condition of steel bars, crack patterns, and the spalling of concrete cover. The electrochemical investigations carried out in this research consisted of the half-cell potential mapping, the electrical resistivity of concrete, and the corrosion rate of steel bars. The results revealed that electrochemical test results conducted in this research were in good agreement with the actual deterioration degree checked by defective appearances. The RC structure was categorized as Grade II-1 (first half of the acceleration stage). Based on the deterioration degree, both applications of small direct current to control the potential of steel bars in immunity condition and patch repair method by removing the chloride contaminated concrete were recommended as appropriate repairing strategies, and they could extend the service life the of structure.


2010 ◽  
Vol 26-28 ◽  
pp. 1184-1189 ◽  
Author(s):  
Ying Zi Zhang ◽  
Ying Fang Fan ◽  
Hong Nan Li ◽  
Xue Nan Wu

Corrosion ratio is an important index to study the mechanical deteriorates of the steel bars, which has a significant effect to evaluate the residual bearing capacity of reinforced concrete structures. To investigate the mechanical properties of the corroded steel bars, Strain energy loss as corrosion ratio is firstly proposed. Tensile test are conducted on ribbed and plain steels, which are corroded by acceleration corrosion method. Comparing with the weight loss and cross-section loss to describe the effect of corrosion of reinforcing bar, the strain energy loss of reinforcing bars is calculated by Simpson quadrature. Results from this paper and other researchers’ test suggest that the strain energy loss may be a better parameter than weight loss or section loss which to assess the corroded steel bars.


2018 ◽  
Vol 10 (12) ◽  
pp. 4806 ◽  
Author(s):  
Carmen Andrade ◽  
Miguel Sanjuán

The fabrication of cement clinker releases CO2 due to the calcination of the limestone used as raw material, which contributes to the greenhouse effect. The industry is involved in a process of reducing this amount liberated to the atmosphere by mainly lowering the amount of clinker in the cements. The cement-based materials, such as concrete and mortars, combine part of this CO2 by a process called “carbonation”. Carbonation has been studied lately mainly due to the fact that it induces the corrosion of steel reinforcement when bringing the CO2 front to the surface of the reinforcing bars. Thus, the “rate of carbonation” of the concrete cover is characterized by and linked to the length of service life of concrete structures. The studies on how much CO2 is fixed by the hydrated phases are scarce and even less has been studied the influence of the type of cement. In present work, 15 cements were used to fabricate paste and concrete specimens withwater/cement (w/c) ratios of 0.6 and 0.45 which reproduce typical concretes for buildings and infrastructures. The amount of carbon dioxide uptake was measured through thermal gravimetry. The degree of carbonation, (DoC) is defined as the CO2 fixed with respect to the total theoretical maximum and the carbon storage capacity (CSC) as the carbonation uptake by a concrete element, a family or the whole inventory of a region or country. The results in the pastes where analyzed with respect to the uptake by concretes and indicated that: (a) the humidity of the pores is a critical parameter that favours the carbonation reaction as higher is the humidity (within the normal atmospheric values), (b) all types of cement uptake CO2 in function of the CaO of the clinker except the binders having slags, which can uptake additional CO2 giving aDoC near or above 100%. The CSC of Spain has been updated with respect to a previous publication resulting in proportions of 10.8–11.2% of the calcination emissions, through considering a ratio of “surface exposed/volume of the element” of 3 as an average of the whole Spanish asset of building and infrastructures.


2018 ◽  
Vol 272 ◽  
pp. 226-231 ◽  
Author(s):  
Ivan Hollý ◽  
Juraj Bilčík

The reinforcing steel embedded in concrete is generally protected against corrosion by the high alkalinity (pH = 12.5 to 13.5) of the concrete pore solution. The structural degradation of concrete structures due to reinforcement’s corrosion has an impact on the safety, serviceability and durability of the structure. The corrosion of reinforcements in the construction of a transport infrastructure (especially bridges), parking areas, etc., is primarily initiated by chlorides from de-icing salts. When corrosion is initiated, active corrosion results in a volumetric expansion of the corrosion products around the reinforcing bars against the surrounding concrete. Reinforcement corrosion causes a volume increase due to the oxidation of metallic iron, which is mainly responsible for exerting the expansive radial pressure at the steel–concrete interface and development of hoop tensile stresses in the surrounding concrete. When this tensile stress exceeds the tensile strength of the concrete, cracks are generated. Higher corrosion rates can lead to the cracking and spalling of the concrete cover. Continued corrosion of reinforcement causes a reduction of total loss of bond between concrete and reinforcement.


Sign in / Sign up

Export Citation Format

Share Document