scholarly journals Modeling of transmission pathways on canine heartworm dynamics

2020 ◽  
Vol 60 (1) ◽  
pp. 15-18
Author(s):  
Sat Byul Seo
Author(s):  
W. L. Steffens ◽  
Nancy B. Roberts ◽  
J. M. Bowen

The canine heartworm is a common and serious nematode parasite of domestic dogs in many parts of the world. Although nematode neuroanatomy is fairly well documented, the emphasis has been on sensory anatomy and primarily in free-living soil species and ascarids. Lee and Miller reported on the muscular anatomy in the heartworm, but provided little insight into the peripheral nervous system or myoneural relationships. The classical fine-structural description of nematode muscle innervation is Rosenbluth's earlier work in Ascaris. Since the pharmacological effects of some nematacides currently being developed are neuromuscular in nature, a better understanding of heartworm myoneural anatomy, particularly in reference to the synaptic region is warranted.


1996 ◽  
Vol 34 (4) ◽  
pp. 225 ◽  
Author(s):  
Jeong Chee LEE ◽  
Chai Yong LEE ◽  
Sung Shik SHIN ◽  
Chung Gil LEE
Keyword(s):  

Author(s):  
Jingjing Wang ◽  
Xueying Wu ◽  
Ruoyu Wang ◽  
Dongsheng He ◽  
Dongying Li ◽  
...  

The coronavirus disease 2019 pandemic has stimulated intensive research interest in its transmission pathways and infection factors, e.g., socioeconomic and demographic characteristics, climatology, baseline health conditions or pre-existing diseases, and government policies. Meanwhile, some empirical studies suggested that built environment attributes may be associated with the transmission mechanism and infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, no review has been conducted to explore the effect of built environment characteristics on the infection risk. This research gap prevents government officials and urban planners from creating effective urban design guidelines to contain SARS-CoV-2 infections and face future pandemic challenges. This review summarizes evidence from 25 empirical studies and provides an overview of the effect of built environment on SARS-CoV-2 infection risk. Virus infection risk was positively associated with the density of commercial facilities, roads, and schools and with public transit accessibility, whereas it was negatively associated with the availability of green spaces. This review recommends several directions for future studies, namely using longitudinal research design and individual-level data, considering multilevel factors and extending to diversified geographic areas.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 180 ◽  
Author(s):  
Hayden D. Hedman ◽  
Eric Krawczyk ◽  
Yosra A. Helmy ◽  
Lixin Zhang ◽  
Csaba Varga

Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.


Author(s):  
John E. Vinson ◽  
Andrew W. Park ◽  
Christopher A. Cleveland ◽  
Michael J. Yabsley ◽  
Vanessa O. Ezenwa ◽  
...  

2019 ◽  
Vol 97 (6) ◽  
pp. 191-196 ◽  
Author(s):  
EJ Dearsley ◽  
RM O’Handley ◽  
CGB Caraguel

2015 ◽  
Vol 09 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Drew Posny ◽  
Chairat Modnak ◽  
Jin Wang

We propose a general multigroup model for cholera dynamics that involves both direct and indirect transmission pathways and that incorporates spatial heterogeneity. Under biologically feasible conditions, we show that the basic reproduction number R0 remains a sharp threshold for cholera dynamics in multigroup settings. We verify the analysis by numerical simulation results. We also perform an optimal control study to explore optimal vaccination strategy for cholera outbreaks.


Sign in / Sign up

Export Citation Format

Share Document