Simple Solid-state Ag/AgCl Reference Electrode and Its Integration with Conducting Polypyrrole Electrode for the Production of All-solid-state pH Sensor

Author(s):  
Walaiporn Prissanaroon-Ouajai ◽  
Paul James Pigram ◽  
Anuvat Sirivat
2010 ◽  
Vol 93-94 ◽  
pp. 591-594 ◽  
Author(s):  
W. Natedungta ◽  
W. Prissanaroon-Ouajai

A solid-state (free of internal electrolyte solution) reference electrode based on metallic silver is simply fabricated via a simple electrodeposition from AgNO3. Potentiometry is carried out to study the performance of the solid-state reference electrode in comparison with the commercial Ag/AgCl reference electrode. In addition, the proposed solid-state reference electrode has been integrated with the PPy-modified pH electrode to form an all-solid-state pH sensor, showing the capability of pH measurement. Absence of the internal solution leads to the pH sensor that is convenient to use and maintenance. In addition, the proposed pH sensor is possibly applied to biochemical and medical processes as well as flow infection analysis.


2021 ◽  
Author(s):  
Wenli Zhang ◽  
Xiaotian Liu ◽  
Youhui Lin ◽  
Liyun Ma ◽  
Linqin Kong ◽  
...  

Abstract Several pH-dependent processes and reactions take place in the human body; hence, the pH of body fluids is the best indicator of disturbed health conditions. However, accurate and real-time diagnosis of the pH of body fluids is complicated because of limited commercially available pH sensors. Hence, we aimed to prepare a flexible, transparent, disposable, user-friendly, and economic strip-based solid-state pH sensor using palladium nanoparticles (PdNPs)/N-doped carbon (NC) composite material. The PdNPs/NC composite material was synthesized using wool keratin (WK) as a precursor. The in-situ prepared PdNPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton with π-π arrangement at the mesoscale level, which mimics the A-B type polymeric structure, and hence, highly susceptible to H+ ions. The optimized carbonization condition in the presence of PdNPs showed that the material obtained using a modified Ag/AgCl reference electrode had the highest pH sensitivity with excellent stability and durability. The optimized pH sensor showed high specificity and selectivity with a sensitivity of 55 mV/pH unit and a relative standard deviation of 0.79%. This study is the first to synthesize PdNPs using WK as a stabilizing and reducing agent. The applicability of the sensor was investigated for biological samples, namely saliva and gastric juices. The proposed protocol and material have implications in solid-state chemistry, where biological material will be the best choice for the synthesis of materials with anticipated performance.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 42
Author(s):  
Shimrith Paul Shylendra ◽  
Wade Lonsdale ◽  
Magdalena Wajrak ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.


2012 ◽  
Vol 450-451 ◽  
pp. 554-556
Author(s):  
Ming Ming Ma ◽  
Zhi Tong ◽  
Yong Wen

A poly silk peptide film pH sensor has been developed using zero current potentiometry system. A poly silk peptide film coated pencil graphite electrode is connected in series between the working and counter electrodes of a potentiostat, and immersed in solution together with a reference electrode. When the solution pH varies, the resulting zero current potentiometry is linear with the values of the solution pH in the range of 1.81 to 11.58. This pH sensor shows high stability, accuracy, selectivity and reproduction.


The Analyst ◽  
2022 ◽  
Author(s):  
Mustafa Nigde ◽  
İsmail Ağır ◽  
Rıdvan Yıldırım ◽  
İbrahim Işıldak

Several fundamentally similar, miniaturized solid-state reference electrode designs, their fabrication and comparison was described in this article. All electrodes were based on Ag/AgCl as their reference element. The best electrode...


1997 ◽  
Vol 144 (12) ◽  
pp. 4345-4350 ◽  
Author(s):  
Yi Can Zhang ◽  
Hiroaki Tagawa ◽  
Shukuji Asakura ◽  
Junichiro Mizusaki ◽  
Hidekazu Narita

Sign in / Sign up

Export Citation Format

Share Document