scholarly journals Stochastic reservoir modelling for prospect mapping: a case study of ''bright'' field, Niger delta

2020 ◽  
Vol 8 (1) ◽  
pp. 102
Author(s):  
James Sunday Abe ◽  
Mary Taiwo Olowokere ◽  
Pius Adekunle Enikanselu

Deterministic reservoir modeling using geostatistical approach is inherently ambiguous because of the uncertainties contained in the generated reservoir models. Stochastic reservoir modelling using sequential gaussian simulation algorithm can resolve this problem by generating various realizations of petrophysical property models in order to map this uncertainties caused by subsurface heterogeneity. Suites of well logs for four wells with seismic data in SEG-Y format were used for this analysis. The wells were correlated and a reservoir was mapped across them in other to map their lateral extent, synthetic seismogram was generated in other to match the event on the seismic with that of the synthetic after carrying out a shift of -12ms. Seismic to well tie was done to ensure that the horizons were mapped accurately. The structural maps generated and the wells were input that goes into the stochastic modelling process. Five realizations each of facies(lithology), effective porosity, total porosity, net to gross, volume of shale and one realization for permeability and water saturation were generated. The facies models showed the distribution of sand and shale with sand at the existing well locations and the effective porosity, total porosity, net to gross, volume of shale models showed excellent values around the well location. Permeability and water saturation models showed that the existing wells were drilled at the flank of the anticlinal structure. Two drillable points (prospects) were proposed by considering all the initial petrophysical property models and the parameters of the two points named P1 and P2 showed that they contain hydrocarbon in commercial quantity. Stochastic reservoir modelling has proved effective in mapping uncertainties and detecting bypassed hydrocarbons.  

2019 ◽  
Vol 10 (2) ◽  
pp. 569-585 ◽  
Author(s):  
Ebong D. Ebong ◽  
Anthony E. Akpan ◽  
Stephen E. Ekwok

Abstract Three-dimensional models of petrophysical properties were constructed using stochastic methods to reduce ambiguities associated with estimates for which data is limited to well locations alone. The aim of this study is to define accurate and efficient petrophysical property models that best characterize reservoirs in the Niger Delta Basin at well locations and predicting their spatial continuities elsewhere within the field. Seismic data and well log data were employed in this study. Petrophysical properties estimated for both reservoirs range between 0.15 and 0.35 for porosity, 0.27 and 0.30 for water saturation, and 0.10 and 0.25 for shale volume. Variogram modelling and calculations were performed to guide the distribution of petrophysical properties outside wells, hence, extending their spatial variability in all directions. Transformation of pillar grids of reservoir properties using sequential Gaussian simulation with collocated cokriging algorithm yielded equiprobable petrophysical models. Uncertainties in petrophysical property predictions were performed and visualized based on three realizations generated for each property. The results obtained show reliable approximations of the geological continuity of petrophysical property estimates over the entire geospace.


1996 ◽  
Vol 36 (1) ◽  
pp. 130 ◽  
Author(s):  
J. Crowley ◽  
E.S. Collins

The Stag Oilfield is located approximately 65 km northwest of Dampier and 25 km southwest of the Wandoo Oilfield near the southeastern margin of the Dampier Sub-basin, on the North West Shelf of Western Australia,.The Stag-1 discovery well was funded by Apache Energy Ltd (formerly Hadson Energy Ltd), Santos Ltd and Globex Far East in June 1993 under a farmin agreement with BHP Petroleum Pty Ltd, Norcen International Ltd and Phillips Australian Oil Co. The well intersected a gross oil column of 15.5 m within the Lower Cretaceous M. australis Sandstone. The oil column intersected at Stag-1 was thicker than the pre-drill mapped structural closure.A 3D seismic survey was acquired over the Stag area in November 1993 to define the size and extent of the accumulation. Following processing and interpretation of the data, an exploration and appraisal program was undertaken. The appraisal wells confirmed that the oil column exceeds mapped structural closure and that there is a stratigraphic component to the trapping mechanism. Two of the appraisal wells were tested; Stag-2 flowed 1050 BOPD from a 5 m vertical section and Stag-6 flowed at 6300 BOPD on pump from a 1030 m horizontal section.Evaluation of the well data indicates the M. australis Sandstone at the Stag Oilfield is genetically related to the reservoir section at the Wandoo Oilfield. The reservoir consists of bioturbated glauconitic subarkose and is interpreted to represent deposition that occurred on a quiescent broad marine shelf. Quantitative evaluation of the oil-in-place has been hampered by the effects of glauconite on wireline log, routine and special core analysis data. Petrophysical evaluation indicates that core porosities and water saturations derived from capillary pressure measurements more closely match total porosity and total water saturation than effective porosity and effective water saturation.A development plan is currently being prepared and additional appraisal drilling in the field is expected.


2021 ◽  
pp. 4702-4711
Author(s):  
Asmaa Talal Fadel ◽  
Madhat E. Nasser

     Reservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two secondary units (MC1, MC2). Using Geoframe software, the available well log images (sonic, density, neutron, gamma ray, spontaneous potential, and resistivity logs) were digitized and updated. Petrophysical properties, such as porosity, saturation of water, saturation of hydrocarbon, etc. were calculated and explained. The total porosity was measured using the density and neutron log, and then corrected to measure the effective porosity by the volume content of clay. Neutron -density cross-plot showed that Mishrif Formation lithology consists predominantly of limestone. The reservoir water resistivity (Rw) values of the Formation were calculated using Pickett-Plot method.   


2020 ◽  
Vol 26 (6) ◽  
pp. 18-34
Author(s):  
Yousif Najeeb Abdul-majeed ◽  
Ahmad Abdullah Ramadhan ◽  
Ahmed Jubiar Mahmood

The aim of this study is interpretation well logs to determine Petrophysical properties of tertiary reservoir in Khabaz oil field using IP software (V.3.5). The study consisted of seven wells which distributed in Khabaz oilfield. Tertiary reservoir composed from mainly several reservoir units. These units are : Jeribe, Unit (A), Unit (A'), Unit (B), Unit (BE), Unit (E),the Unit (B) considers best reservoir unit because it has good Petrophysical properties (low water saturation and high porous media ) with high existence of hydrocarbon in this unit. Several well logging tools such as Neutron, Density, and Sonic log were used to identify total porosity, secondary porosity, and effective porosity in tertiary reservoir. For Lithological identification for tertiary reservoir units using (NPHI-RHOB) cross plot composed of dolomitic-limestone and mineralogical identification using (M/N) cross plot consist of calcite and dolomite. Shale content was estimated less than (8%) for all wells in Khabaz field. CPI results were applied for all wells in Khabaz field which be clarified movable oil concentration in specific units are: Unit (B), Unit (A') , small interval of Jeribe formation , and upper part of Unit (EB).


2021 ◽  
Vol 11 (7) ◽  
pp. 2911
Author(s):  
Naveed Ahmad ◽  
Sikandar Khan ◽  
Abdullatif Al-Shuhail

Well logging is a significant procedure that assists geophysicists and geologists with making predictions regarding boreholes and efficiently utilizing and optimizing the drilling process. The current study area is positioned in the Punjab Territory of Pakistan, and the geographic coordinates are 30020′10 N and 70043′30 E. The objective of the current research work was to interpret the subsurface structure and reservoir characteristics of the Kabirwala area Tola (01) well, which is located in the Punjab platform, Central Indus Basin, utilizing 2D seismic and well log data. Formation evaluation for hydrocarbon potential using the reservoir properties is performed in this study. For the marked zone of interest, the study also focuses on evaluating the average water saturation, average total porosity, average effective porosity, and net pay thickness. The results of the study show a spotted horizon stone with respect to time and depth as follows: Dunghan formation, 0.9 s and 1080.46 m; Cretaceous Samana Suk formation, 0.96 s and 1174.05 m; Datta formation, 1.08 s and 1400 m; and Warcha formation, 1.24 s and 1810 m. Based on the interpretation of well logs, the purpose of petrophysical analysis was to identify hydrocarbon-bearing zones in the study area. Gamma ray, spontaneous potential, resistivity, neutron, and density log data were utilized. The high zone present in the east–west part of the contour maps may be a possible location of hydrocarbon entrapment, which is further confirmed by the presence of the Tola-01 well.


2020 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Raja Asim Zeb ◽  
Muhammad Haziq Khan ◽  
Intikhab Alam ◽  
Ahtisham Khalid ◽  
Muhammad Faisal Younas

The lower Indus basin is leading hydrocarbon carriage sedimentary basin in Pakistan. Evaluation of two sorts out wells namely Sawan-2 and Sawan-3 has been assumed in this work for estimation and dispensation of petro physical framework using well log data. The systematic formation assessment by using petro physical studies and neutron density cross plots reveal that lithofacies mainly composed of sandstone. The hydrocarbon capability of the formation zone have been mark through several isometric maps such as water saturation, picket plots, cross plots, log analysis Phie vs depth and composite log analysis. The estimated petro physical properties shows that reservoir have volume of shale 6.1% and 14.0%, total porosity is observed between 14.6% and 18.2%, effective porosity ranges 12.5-16.5%, water saturation exhibits between 14.05% and 31.58%, hydrocarbon saturation ranges 68.42% -86.9%, The lithology of lower goru formation is dominated by very fine to fine and silty sandstone. The study method can be use within the vicinity of central Indus basin and similar basin elsewhere in the globe to quantify petro physical properties of oil and gas wells and comprehend the reservoir potential.


2021 ◽  
Vol 24 (11) ◽  
pp. 1941-1947
Author(s):  
C Eze ◽  
G Emujakporue ◽  
DC Okujagu

Petrophysical-Modelling is indispensable in upstream Projects, considering the high cost, risks and uncertainties associated with this sector. Petrophysical qualities for Queen Field was modeled using Information obtained and analyzed from well-logs and 3-D Seismic data. Coarse-grain, Medium- grain and fine-grain Sands as well as Shale were all delineated by GR log. Results of petrophysical evaluation conducted on seven reservoir intervals correlated across the field showed that; Shale volume was below 35%, Total Porosity are > 20% Effective Porosity are >15% Permeability is > 380.00mD all of this conforms to excellent reservoir quantity. Seismic interpretation showed the presence of synthetic and antithetic faults. Two horizons were mapped on seismic data and utilized for modeling. These models were the framework for facies and petrophysical properties distribution. Facies models were generated using sequential indicator simulation while petrophysical properties were generated using sequential gaussian simulation algorithm. A comparison was further done between facies constrained and non-facies constrained models. It was found that for Porosity, Permeability, Water of Saturation and Shale Volume Models not constrained to facies all showed overestimated Models, in addition Stochastic STOIIP not constrained to facies gave an Over Estimated P50 value for Surface I and O Reservoir Interval as 624.028M, 76.28MM, when compared to Stochastic Hydrocarbon STOIIP when constrained to facies that showed Stochastic P50 value of 513,247 and 67.04MM for surface I and O and Deterministic STOIIP of 742.90M and 87.88MM. This study validates the practice of constraining Petrophysical model to facies available on the field as the best practice. Keywords: Queen Field, Onshore, Niger Delta, 3D Petrophysical.


Author(s):  
O. L. Ayodele ◽  
T. K. Chatterjee ◽  
M. Opuwari

AbstractGamtoos Basin is an echelon sub-basin under the Outeniqua offshore Basin of South Africa. It is a complex rift-type basin with both onshore and offshore components and consists of relatively simple half-grabens bounded by a major fault to the northeast. This study is mainly focused on the evaluation of the reservoir heterogeneity of the Valanginian depositional sequence. The prime objective of this work is to generate a 3D static reservoir model for a better understanding of the spatial distribution of discrete and continuous reservoir properties (porosity, permeability, and water saturation). The methodology adopted in this work includes the integration of 2D seismic and well-log data. These data were used to construct 3D models of lithofacies, porosity, permeability, and water saturation through petrophysical analysis, upscaling, Sequential Indicator Simulation, and Sequential Gaussian Simulation algorithms, respectively. Results indicated that static reservoir modeling adequately captured reservoir geometry and spatial properties distribution. In this study, the static geocellular model delineates lithology into three facies: sandstone, silt, and shale. Petrophysical models were integrated with facies within the reservoir to identify the best location that has the potential to produce hydrocarbon. The statistical analysis model revealed sandstone is the best facies and that the porosity, permeability, and water saturation ranges between 8 and 22%, 0.1 mD (< 1.0 mD) to 1.0 mD, and 30–55%. Geocellular model results showed that the northwestern part of the Gamtoos Basin has the best petrophysical properties, followed by the central part of the Basin. Findings from this study have provided the information needed for further gas exploration, appraisal, and development programs in the Gamtoos Basin.


Author(s):  
S. M. Talha Qadri ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby ◽  
Ahmed K. Abd El-Aal

AbstractThe study used the sedimentological and well log-based petrophysical analysis to evaluate the Farewell sandstone, the reservoir formation within the Kupe South Field. The sedimentological analysis was based on the data sets from Kupe South-1 to 5 wells, comprising the grain size, permeability, porosity, the total cement concentrations, and imprints of diagenetic processes on the reservoir formation. Moreover, well log analysis was carried on the four wells namely Kupe South 1, 2, 5 and 7 wells for evaluating the parameters e.g., shale volume, total and effective porosity, water wetness and hydrocarbon saturation, which influence the reservoir quality. The results from the sedimentological analysis demonstrated that the Farewell sandstone is compositionally varying from feldspathic arenite to lithic arenite. The analysis also showed the presence of significant total porosity and permeability fluctuating between 10.2 and 26.2% and 0.43–1376 mD, respectively. The diagenetic processes revealed the presence of authigenic clay and carbonate obstructing the pore spaces along with the occurrence of well-connected secondary and hybrid pores which eventually improved the reservoir quality of the Farewell sandstone. The well log analysis showed the presence of low shale volume between 10.9 and 29%, very good total and effective porosity values ranging from 19 to 32.3% as well as from 17 to 27%, respectively. The water saturation ranged from 22.3 to 44.9% and a significant hydrocarbon saturation fluctuating from 55.1 to 77.7% was also observed. The well log analysis also indicated the existence of nine hydrocarbon-bearing zones. The integrated findings from sedimentological and well log analyses verified the Farewell sandstone as a good reservoir formation.


Author(s):  
Mohammad Abdelfattah Sarhan

AbstractIn this work, the petrophysical properties of Abu Madi reservoir in El-Qara Field at northern Nile Delta Basin (NDB) were evaluated depending on well logging data of two wells: El-Qara-2 and El-Qara-3. This evaluation revealed that in El-Qara-2 well, the promising gas zone is detected between depths of 3315 and 3358 m, while in El-Qara-3 well, the best gas interval is detected between depths of 3358 and 3371 m. In addition to the production test parameters (gas rate, condensate rate, gas gravity, condensate gravity, gas-to-oil ratio, flowing tubing head pressure, flowing bottom hole pressure, and static bottom hole pressure), the calculated petrophysical parameters (shale volume, total porosity, effective porosity, and water saturation) for both intervals were relatively similar. This confirms that the investigated wells were drilled at the same reservoir interval within Abu Madi Fm. The depth variation in the examined zones was attributed to the presence of buried normal faults between El-Qara-2 and El-Qara-3 wells. This observation may be supported from the tectonic influence during the deposition of Abu Madi Fm. as a portion of the Messinian syn-rift megasequence beneath the NDB.


Sign in / Sign up

Export Citation Format

Share Document