scholarly journals 3D Petrophysical Modelling Of Queen Field, Onshore Niger Delta, Nigeria

2021 ◽  
Vol 24 (11) ◽  
pp. 1941-1947
Author(s):  
C Eze ◽  
G Emujakporue ◽  
DC Okujagu

Petrophysical-Modelling is indispensable in upstream Projects, considering the high cost, risks and uncertainties associated with this sector. Petrophysical qualities for Queen Field was modeled using Information obtained and analyzed from well-logs and 3-D Seismic data. Coarse-grain, Medium- grain and fine-grain Sands as well as Shale were all delineated by GR log. Results of petrophysical evaluation conducted on seven reservoir intervals correlated across the field showed that; Shale volume was below 35%, Total Porosity are > 20% Effective Porosity are >15% Permeability is > 380.00mD all of this conforms to excellent reservoir quantity. Seismic interpretation showed the presence of synthetic and antithetic faults. Two horizons were mapped on seismic data and utilized for modeling. These models were the framework for facies and petrophysical properties distribution. Facies models were generated using sequential indicator simulation while petrophysical properties were generated using sequential gaussian simulation algorithm. A comparison was further done between facies constrained and non-facies constrained models. It was found that for Porosity, Permeability, Water of Saturation and Shale Volume Models not constrained to facies all showed overestimated Models, in addition Stochastic STOIIP not constrained to facies gave an Over Estimated P50 value for Surface I and O Reservoir Interval as 624.028M, 76.28MM, when compared to Stochastic Hydrocarbon STOIIP when constrained to facies that showed Stochastic P50 value of 513,247 and 67.04MM for surface I and O and Deterministic STOIIP of 742.90M and 87.88MM. This study validates the practice of constraining Petrophysical model to facies available on the field as the best practice. Keywords: Queen Field, Onshore, Niger Delta, 3D Petrophysical.

Author(s):  
Mohammad Abdelfattah Sarhan

AbstractThe main aim of the article is to evaluate the gas potentiality for the post-Messinian megasequence in TAO Field, North Sinai Concession, offshore Nile Delta Basin. The detailed petrophysical analysis for three deviated wells in the study area (Tao-3 ST1 Well, Tao-5 STA Well and Tao-7 Well) revealed that the Pliocene Kafr El-Sheikh Formation includes eleven gas-bearing zones. These zones were named: A, B, C in Tao-3 ST1 Well and D, E, F in Tao-5 STA Well. In Tao-7 Well, the interesting zones are named G, H, I, J and K. All of these sandy intervals are relatively shallow in depth and differ in thickness between 4 and 56 m. These zones are characterized by shale volume (10%), total porosity (30–40%), effective porosity (30–35%), gas saturation (50–90%), high effective permeability to gas and low permeability to water. The seismic data displayed that listric faults and the associated rollover folds have an important role in forming structural traps for the examined gas-bearing zones in Tao Field and its surroundings. This work revealed that the success rate in discovering new gas prospects within the Pliocene–Pleistocene succession at North Sinai Concession is very high.


2021 ◽  
Vol 39 (4) ◽  
pp. 962-971
Author(s):  
M. Ilevbare ◽  
O.M. Omorogieva

Integrated wireline logs and lithostratigraphic techniques were employed to determine the lithological and petrophysical properties of wells A and B in E- field, onshore Niger Delta. The Reservoirs in both wells were analyzed using a minimum thickness or depth of penetration of 5.0m. For the two wells, Gas Water Contact (GWC), Gas Oil Contact (GOC), and Oil Water Contact (OWC) were found to be present at varying formation depths. GWC, GOC, and OWC at depth of 2967.50m, 3348m and 2286m respectively for well A and a GOC at depth 1715m for well B. The correlation of both wells reveals a gas reservoir, water reservoir, and a non-resistive, but highlyconductive zone at 2450m, 2500m, and 2150m depth respectively. The formation porosity (∅𝑫), total porosity (∅𝑻), effective porosity (∅𝑬) and resistivity values of well A ranges from (27.27 - 39.59) %, (1.3x10 –1 - 37.82) %, ( 1.638x10– 4 – 81. 38)%, (2.05 - 150)Ωm respectively. Conversely, well B measured (27.27 - 36.50) %, (2.25x10–2 - 93.0) %, (9.75x10– 4 - 32.79) % and (2 – 200) Ωm respectively. Hydrocarbon saturation (SHC) and Bulk volume of Hydrocarbon (BVH) for well A ranges from (73.27-95.10)% and (24.24 - 34. 58)% while that of well B ranges from (77.10 - 97. 90)% and (23.36 - 35.53)% for SHC and BVH respectively. The average ∅𝑻 and ∅𝑬 of 56.2% and 42.6% reveal excellent porosities in well A and reservoirs 2,3,4a and 11 in well B with average ∅𝑻and ∅𝑬 of 37.82% and 30.6% also show an excellent porosities. The result from the Petrophysical indices indicates pay zones at reservoirs 10a, 10b and 11 in well A andreservoir 11 in well B which are predominantly gas reserves. Keywords: Reservoirs, Onshore, Oil and Gas, Petrophysical properties, Niger Delta and Lithology 


Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


2020 ◽  
Vol 26 (6) ◽  
pp. 18-34
Author(s):  
Yousif Najeeb Abdul-majeed ◽  
Ahmad Abdullah Ramadhan ◽  
Ahmed Jubiar Mahmood

The aim of this study is interpretation well logs to determine Petrophysical properties of tertiary reservoir in Khabaz oil field using IP software (V.3.5). The study consisted of seven wells which distributed in Khabaz oilfield. Tertiary reservoir composed from mainly several reservoir units. These units are : Jeribe, Unit (A), Unit (A'), Unit (B), Unit (BE), Unit (E),the Unit (B) considers best reservoir unit because it has good Petrophysical properties (low water saturation and high porous media ) with high existence of hydrocarbon in this unit. Several well logging tools such as Neutron, Density, and Sonic log were used to identify total porosity, secondary porosity, and effective porosity in tertiary reservoir. For Lithological identification for tertiary reservoir units using (NPHI-RHOB) cross plot composed of dolomitic-limestone and mineralogical identification using (M/N) cross plot consist of calcite and dolomite. Shale content was estimated less than (8%) for all wells in Khabaz field. CPI results were applied for all wells in Khabaz field which be clarified movable oil concentration in specific units are: Unit (B), Unit (A') , small interval of Jeribe formation , and upper part of Unit (EB).


2021 ◽  
pp. 4758-4768
Author(s):  
Ahmed Hussain ◽  
Medhat E. Nasser ◽  
Ghazi Hassan

     The main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of hydrocarbons that were concentrated in all of the three units, but in different wells. All of the units have high porosity, especially unit two, although it is saturated with water.


2019 ◽  
Vol 10 (2) ◽  
pp. 569-585 ◽  
Author(s):  
Ebong D. Ebong ◽  
Anthony E. Akpan ◽  
Stephen E. Ekwok

Abstract Three-dimensional models of petrophysical properties were constructed using stochastic methods to reduce ambiguities associated with estimates for which data is limited to well locations alone. The aim of this study is to define accurate and efficient petrophysical property models that best characterize reservoirs in the Niger Delta Basin at well locations and predicting their spatial continuities elsewhere within the field. Seismic data and well log data were employed in this study. Petrophysical properties estimated for both reservoirs range between 0.15 and 0.35 for porosity, 0.27 and 0.30 for water saturation, and 0.10 and 0.25 for shale volume. Variogram modelling and calculations were performed to guide the distribution of petrophysical properties outside wells, hence, extending their spatial variability in all directions. Transformation of pillar grids of reservoir properties using sequential Gaussian simulation with collocated cokriging algorithm yielded equiprobable petrophysical models. Uncertainties in petrophysical property predictions were performed and visualized based on three realizations generated for each property. The results obtained show reliable approximations of the geological continuity of petrophysical property estimates over the entire geospace.


2020 ◽  
Vol 8 (1) ◽  
pp. 102
Author(s):  
James Sunday Abe ◽  
Mary Taiwo Olowokere ◽  
Pius Adekunle Enikanselu

Deterministic reservoir modeling using geostatistical approach is inherently ambiguous because of the uncertainties contained in the generated reservoir models. Stochastic reservoir modelling using sequential gaussian simulation algorithm can resolve this problem by generating various realizations of petrophysical property models in order to map this uncertainties caused by subsurface heterogeneity. Suites of well logs for four wells with seismic data in SEG-Y format were used for this analysis. The wells were correlated and a reservoir was mapped across them in other to map their lateral extent, synthetic seismogram was generated in other to match the event on the seismic with that of the synthetic after carrying out a shift of -12ms. Seismic to well tie was done to ensure that the horizons were mapped accurately. The structural maps generated and the wells were input that goes into the stochastic modelling process. Five realizations each of facies(lithology), effective porosity, total porosity, net to gross, volume of shale and one realization for permeability and water saturation were generated. The facies models showed the distribution of sand and shale with sand at the existing well locations and the effective porosity, total porosity, net to gross, volume of shale models showed excellent values around the well location. Permeability and water saturation models showed that the existing wells were drilled at the flank of the anticlinal structure. Two drillable points (prospects) were proposed by considering all the initial petrophysical property models and the parameters of the two points named P1 and P2 showed that they contain hydrocarbon in commercial quantity. Stochastic reservoir modelling has proved effective in mapping uncertainties and detecting bypassed hydrocarbons.  


Author(s):  
S. M. Talha Qadri ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby ◽  
Ahmed K. Abd El-Aal

AbstractThe study used the sedimentological and well log-based petrophysical analysis to evaluate the Farewell sandstone, the reservoir formation within the Kupe South Field. The sedimentological analysis was based on the data sets from Kupe South-1 to 5 wells, comprising the grain size, permeability, porosity, the total cement concentrations, and imprints of diagenetic processes on the reservoir formation. Moreover, well log analysis was carried on the four wells namely Kupe South 1, 2, 5 and 7 wells for evaluating the parameters e.g., shale volume, total and effective porosity, water wetness and hydrocarbon saturation, which influence the reservoir quality. The results from the sedimentological analysis demonstrated that the Farewell sandstone is compositionally varying from feldspathic arenite to lithic arenite. The analysis also showed the presence of significant total porosity and permeability fluctuating between 10.2 and 26.2% and 0.43–1376 mD, respectively. The diagenetic processes revealed the presence of authigenic clay and carbonate obstructing the pore spaces along with the occurrence of well-connected secondary and hybrid pores which eventually improved the reservoir quality of the Farewell sandstone. The well log analysis showed the presence of low shale volume between 10.9 and 29%, very good total and effective porosity values ranging from 19 to 32.3% as well as from 17 to 27%, respectively. The water saturation ranged from 22.3 to 44.9% and a significant hydrocarbon saturation fluctuating from 55.1 to 77.7% was also observed. The well log analysis also indicated the existence of nine hydrocarbon-bearing zones. The integrated findings from sedimentological and well log analyses verified the Farewell sandstone as a good reservoir formation.


2019 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Ubong Essien

Well log data from two wells were evaluated for shale volume, total and effective porosity. Well log data were obtained from gamma ray, neutron-density log, resistivity, sonic and caliper log respectively. This study aimed at evaluating the effect of shale volume, total and effective porosity form two well log data. The results of the analysis depict the presence of sand, sand-shale and shale formations. Hydrocarbon accumulation were found to be high in sand, fair in sand-shale and low in shale, since existence of shale reduces total and effective porosity and water saturation of the reservoir. The thickness of the reservoir ranged from 66 – 248.5ft. The average values of volume of shale, total and effective porosity values ranged from 0.004 – 0.299dec, 0.178 – 0.207dec and 0.154 – 0.194dec. Similarly, the water saturation and permeability ranged from 0.277 – 0.447dec and 36.637 - 7808.519md respectively. These values of total and effective porosity are high in sand, fair in sand-shale and low in shale formations. The results for this study demonstrate: accuracy, applicability of these approaches and enhance the proper evaluation of petrophysical parameters from well log data.    


2012 ◽  
Vol 19 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Lozada-Zumaeta ◽  
R. D. Arizabalo ◽  
G. Ronquillo-Jarillo ◽  
E. Coconi-Morales ◽  
D. Rivera-Recillas ◽  
...  

Abstract. The sandy-clayey hydrocarbon reservoirs of the Upper Paleocene and Lower Eocene located to the north of Veracruz State, Mexico, present highly complex geological and petrophysical characteristics. These reservoirs, which consist of sandstone and shale bodies within a depth interval ranging from 500 to 2000 m, were characterized statistically by means of fractal modeling and geostatistical tools. For 14 wells within an area of study of approximately 6 km2, various geophysical well logs were initially edited and further analyzed to establish a correlation between logs and core data. The fractal modeling based on the R/S (rescaled range) methodology and the interpolation method by successive random additions were used to generate pseudo-well logs between observed wells. The application of geostatistical tools, sequential Gaussian simulation and exponential model variograms contributed to estimate the spatial distribution of petrophysical properties such as effective porosity (PHIE), permeability (K) and shale volume (VSH). From the analysis and correlation of the information generated in the present study, it can be said, from a general point of view, that the results not only are correlated with already reported information but also provide significant characterization elements that would be hardly obtained by means of conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document