scholarly journals Transmutation of the two parameters Rayleigh distribution

Author(s):  
Ehsan Ullah ◽  
Mirza Shahzad

In this study, transmuted two parameters Rayleigh distribution is proposed using quadratic rank transmutation map. This proposed distribution is more flexible and versatile than two parameters Rayleigh distribution. Some properties of the proposed distribution are derived such as moments, moment generating function, mean, variance, median, quantile function, reliability, and hazard function. The parameter estimation is approached through the method of least square estimation. The th and joint order statistics are also derived for the proposed distribution. The application of proposed model illustrated and compared using real data.

Author(s):  
Hamdy Salem ◽  
Abd-Elwahab Hagag

In this paper, a composite distribution of Kumaraswamy and Lindley distributions namely, Kumaraswamy-Lindley Kum-L distribution is introduced and studied. The Kum-L distribution generalizes sub-models for some widely known distributions. Some mathematical properties of the Kum-L such as hazard function, quantile function, moments, moment generating function and order statistics are obtained. Estimation of parameters for the Kum-L using maximum likelihood estimation and least square estimation techniques are provided. To illustrate the usefulness of the proposed distribution, simulation study and real data example are used.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2019 ◽  
Vol 17 (1) ◽  
pp. 700-715
Author(s):  
Hayrinisa Demirci Biçer

Abstract In the present paper, we introduce a new form of generalized Rayleigh distribution called the Alpha Power generalized Rayleigh (APGR) distribution by following the idea of extension of the distribution families with the Alpha Power transformation. The introduced distribution has the more general form than both the Rayleigh and generalized Rayleigh distributions and provides a better fit than the Rayleigh and generalized Rayleigh distributions for more various forms of the data sets. In the paper, we also obtain explicit forms of some important statistical characteristics of the APGR distribution such as hazard function, survival function, mode, moments, characteristic function, Shannon and Rényi entropies, stress-strength probability, Lorenz and Bonferroni curves and order statistics. The statistical inference problem for the APGR distribution is investigated by using the maximum likelihood and least-square methods. The estimation performances of the obtained estimators are compared based on the bias and mean square error criteria by a conducted Monte-Carlo simulation on small, moderate and large sample sizes. Finally, a real data analysis is given to show how the proposed model works in practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
M. Shrahili ◽  
I. Elbatal ◽  
Mohammed Elgarhy

A new lifetime distribution with two parameters, known as the sine half-logistic inverse Rayleigh distribution, is proposed and studied as an extension of the half-logistic inverse Rayleigh model. The sine half-logistic inverse Rayleigh model is a new inverse Rayleigh distribution extension. In the application section, we show that the sine half-logistic inverse Rayleigh distribution is more flexible than the half-logistic inverse Rayleigh and inverse Rayleigh distributions. The statistical properties of the half-logistic inverse Rayleigh model are calculated, including the quantile function, moments, moment generating function, incomplete moment, and Lorenz and Bonferroni curves. Entropy measures such as Rényi entropy, Havrda and Charvat entropy, Arimoto entropy, and Tsallis entropy are proposed for the sine half-logistic inverse Rayleigh distribution. To estimate the sine half-logistic inverse Rayleigh distribution parameters, statistical inference using the maximum likelihood method is used. Applications of the sine half-logistic inverse Rayleigh model to real datasets demonstrate the flexibility of the sine half-logistic inverse Rayleigh distribution by comparing it to well-known models such as half-logistic inverse Rayleigh, type II Topp–Leone inverse Rayleigh, transmuted inverse Rayleigh, and inverse Rayleigh distributions.


Author(s):  
Rania M. Kamal ◽  
Moshira A. Ismail

This paper is devoted to study a new four- parameter additive model. The newly suggested model is referred to as the flexible Weibull extension-Burr XII distribution. It is derived by considering a serial system with one component following a flexible Weibull extension distribution and another following a Burr XII distribution. The usefulness of the model stems from the flexibility of its failure rate which accommodates bathtub and modified bathtub among other risk patterns. These two patterns have been widely accepted in several fields, especially reliability and engineering fields. In addition, the importance of the new distribution is that it includes new sub-models which are not known in the literature. Some statistical properties of the proposed distribution such as quantile function, the mode, the rth moment, the moment generating function and the order statistics are discussed. Moreover, the method of maximum likelihood is used to estimate the parameters of the model. Also, to evaluate the performance of the estimators, a simulation study is carried out. Finally, the performance of the proposed distribution is compared through a real data set to some well-known distributions including the new modified Weibull, the additive Burr and the additive Weibull distributions. It is shown that the proposed model provides the best fit for the used real data set.  


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Uchenna U. Uwadi ◽  
Elebe E. Nwaezza

In this study, we proposed a new generalised transmuted inverse exponential distribution with three parameters and have transmuted inverse exponential and inverse exponential distributions as sub models. The hazard function of the distribution is nonmonotonic, unimodal and inverted bathtub shaped making it suitable for modelling lifetime data. We derived the moment, moment generating function, quantile function, maximum likelihood estimates of the parameters, Renyi entropy and order statistics of the distribution. A real life data set is used to illustrate the usefulness of the proposed model.     


Author(s):  
Sule Ibrahim ◽  
Bello Olalekan Akanji ◽  
Lawal Hammed Olanrewaju

We propose a new distribution called the extended generalized inverse exponential distribution with four positive parameters, which extends the generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate and odd functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to two real data sets which show that the extended generalized inverse exponential model provides a better fit than other models considered.


2017 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Hesham Reyad ◽  
Soha A. Othman ◽  
Adil M Younis ◽  
Ahmed M. Hashish

We introduce a new four parameter continuous model, called the Kumaraswamy compound Rayleigh (KwCR) distribution that extends the compound Rayleigh distribution. We study some mathematical properties of this distribution such as; mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics. We consider the methods of moments and maximum likelihood for estimating the model parameters.


Sign in / Sign up

Export Citation Format

Share Document