scholarly journals Extended Rayleigh Distribution: Properties and Application to Failure Data

Author(s):  
Aladesuyi Alademomi ◽  
Philips Samuel Ademola ◽  
Adefolarin Adekunle David

This paper introduces a new three parameter Rayleigh distribution which generalizes the Rayleigh distribution. The new model is referred to as Extended Rayleigh (ER) distribution. Various mathematical properties of the new model including ordinary and incomplete moment, quantile function, generating function are derived. We propose the method of maximum likelihood for estimating the model parameters. A real life data set is used to compare the flexibility of the new model with other models.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Maha A. Aldahlan

In this paper, a new three-parameter lifetime distribution is introduced; the new model is a generalization of the log-logistic (LL) model, and it is called the alpha power transformed log-logistic (APTLL) distribution. The APTLL distribution is more flexible than some generalizations of log-logistic distribution. We derived some mathematical properties including moments, moment-generating function, quantile function, Rényi entropy, and order statistics of the new model. The model parameters are estimated using maximum likelihood method of estimation. The simulation study is performed to investigate the effectiveness of the estimates. Finally, we used one real-life dataset to show the flexibility of the APTLL distribution.


2019 ◽  
Vol 15 (4) ◽  
pp. 849
Author(s):  
Hesham Reyad‎ ◽  
Mahmoud Ali Selim ◽  
Soha Othman

Based on the Nadarajah Haghighi distribution and the Topp Leone-G family in view of the T-X family, we introduce a new generator of continuous distributions with three extra parameters called the Nadarajah Haghighi Topp Leone-G family. Three sub-models of the new class are discussed. Main mathematical properties of the new family are investigated such as; quantile function, raw and incomplete moments, Bonferroni and Lorenz curves, moment and probability generating functions, stress-strength model, Shanon and Rényi entropies, order statistics and probability weighted moments. The model parameters of the new family is estimated by using the method of maximum likelihood and the observed information matrix is also obtained. We introduce two real applications to show the importance of the new family.


Author(s):  
Uchenna U. Uwadi ◽  
Elebe E. Nwaezza

In this study, we proposed a new generalised transmuted inverse exponential distribution with three parameters and have transmuted inverse exponential and inverse exponential distributions as sub models. The hazard function of the distribution is nonmonotonic, unimodal and inverted bathtub shaped making it suitable for modelling lifetime data. We derived the moment, moment generating function, quantile function, maximum likelihood estimates of the parameters, Renyi entropy and order statistics of the distribution. A real life data set is used to illustrate the usefulness of the proposed model.     


2021 ◽  
Vol 50 (5) ◽  
pp. 1-22
Author(s):  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Muhammad Mansoor ◽  
Muhammad Zubair ◽  
Ayman Alzaatreh

We introduce a new model named the Kumaraswamy Pareto IV distribution which extends the Pareto and Pareto IV distributions. The density function is very flexible and can be left-skewed, right-skewed and symmetrical shapes. It hasincreasing, decreasing, upside-down bathtub, bathtub, J and reversed-J shaped hazard rate shapes. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments,Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, probability weighted moments and generating function. We provide the density function of the order statistics and their moments. The Renyi and q entropies are also obtained. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of three real-life data sets. In fact, our proposed model provides a better fit to these data than the gamma-Pareto IV, gamma-Pareto, beta-Pareto,exponentiated Pareto and Pareto IV models.


2019 ◽  
Vol 16 (4) ◽  
pp. 0937
Author(s):  
Saad Et al.

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.


2017 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Hesham Reyad ◽  
Soha A. Othman ◽  
Adil M Younis ◽  
Ahmed M. Hashish

We introduce a new four parameter continuous model, called the Kumaraswamy compound Rayleigh (KwCR) distribution that extends the compound Rayleigh distribution. We study some mathematical properties of this distribution such as; mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics. We consider the methods of moments and maximum likelihood for estimating the model parameters.


2019 ◽  
Vol 11 (2) ◽  
pp. 185-194
Author(s):  
A. S. Malik ◽  
S. P. Ahmad

This paper proposes a new three parameter-distribution through the technique known as Transmutation. The proposed distribution is named Transmuted Alpha power inverse Rayleigh Distribution. Several important properties of the distribution are derived. The parameter estimation is also carried out. Two real life data set are used at the end to describe the potential application of proposed model.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
Nagla Yahia

We propose a new four parameters continuous model called the Topp Leone generalized inverted Kumaraswamy distribution which extends the generalized inverted Kumaraswamy distribution. Basic mathematical properties of the new distribution are invstigated such as; quantile function, raw and incomplete moments, generating functions, probability weighted moments, order statistics, Rényi entropy, stochastic ordering and stress strength model. The method of maximum likelihood is used to estimate the model parameters of the new distribution. A Monte Carlo simulation is conducted to examine the behavior of the parameter estimates. The applicability of the new model is demonstrated by means of two real applications.


Author(s):  
Kuje Samson ◽  
Abubakar, Mohammad Auwal ◽  
Asongo, Iorkaa Abraham ◽  
Alhaji, Ismaila Sulaiman

This article uses the odd Lindley-G family of distributions to propose and study a new compound distribution called “odd Lindley-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lindley-Kumaraswamy distribution are defined and studied by deriving and discussing many properties of the distribution such as the ordinary moments, moment generating function, characteristics function, quantile function, reliability functions, order statistics and other useful measures. The unknown model parameters are also estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real life datasets. The results show that the proposed distribution outperforms the other fitted compound models selected for this study and hence it is a flexible generalization of the Kumaraswamy distribution.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Julian Ibezimako Mbegbu ◽  
Friday Ewere

In this paper, we propose Complementary Kumaraswamy Weibull Power Series (CKWPS) Distributions. The method is obtained by compounding the Kumaraswamy-G distribution and Power Series distribution on a latent complementary distance problem base. The mathematical properties of the proposed class of distribution are studied. The method of Maximum Likelihood Estimation is used for obtaining the estimates of the model parameters. A member of the family is investigated in detail. Finally an application of the proposed class is illustrated using a real data set.


Sign in / Sign up

Export Citation Format

Share Document