scholarly journals Waste energy recovery in window air conditioning system

2014 ◽  
Vol 3 (2) ◽  
pp. 179
Author(s):  
R. Sasidharan ◽  
V. Palaniswamy ◽  
C.R. Manibharathi ◽  
R. Pannerselvam ◽  
N. Venkatesan

Faster, mightier & smaller is still the keyword for every invention and development. In day-to-day world we concentrate on the compactness and efficiency of every product. Keeping this in thought, the Waste Energy Recovery in Window Air conditioning System is designed and fabricated in an economical manner. Human comfort is that condition of mind, which expresses itself with the thermal environment. In this two rival properties of cool water and heat water are obtained. This system can be used continuously. By using this system there is no need of going for a separate air conditioner or water heater and water cooler. As both purposes are served by a single system, the cost is also lowered to a considerable level. Keywords: Waste Energy, Window Air Conditioning System.

2021 ◽  
Vol 271 ◽  
pp. 01012
Author(s):  
Chenchen Li ◽  
Xiuwei Li ◽  
Yonghang Li

Absorption air-conditioning system is a green air-conditioning system. With binary solution as the working fluid, the system performance is better with lower cost. To further improve the efficiency, an electrosorption method is proposed to regenerate the absorbent solution. Its principle is similar to capacitive deionization. The system with LiBr-CaCl2 has been confirmed in the improvement of performance, while the cost-effectiveness wasn’t ideal to satisfy the need of some cases. To solve this problem, the system with MgCl2-CaCl2 is proposed to analyze the enhancement in the cost-effectiveness. The theoretical and experimental results verify the advantage in the cost-effectiveness compared to the system with LiBr-CaCl2. Although the performance of the system with MgCl2-CaCl2 is lower than the other mixed solution, the actual COP could reach 1.9, which is still better than the system with single absorbents. Meanwhile, the energy recovery characteristic could further enhance the advantage in the improvement of performance for the system with LiBr-CaCl2 and make up the weakness of the system with MgCl2-CaCl2 solution. The exploration of higher energy recovery efficiency will further improve the competitiveness of the system.


Author(s):  
Sensuke Shimizu ◽  
Haruo Terasaka ◽  
Akira Yamada

The objective in this study is to evaluate thermal environment of a room with an advanced ceiling hidden type air-conditioner using numerical simulation. As the characteristic of the air-conditioner, it supplies a weak airflow from a large inlet to a room. Circulator fans are fixed on the ceiling. Numerical simulation is performed to a room with the air-conditioner. PMV [1] is calculated from the obtained data and thermal sensation of the people is investigated. From the PMV distribution, it was found that this sensation was improved by the advanced air-conditioner.


2020 ◽  
Vol 2 (3) ◽  
pp. 168-174
Author(s):  
P. Hengjinda ◽  
Dr. Joy Iong Zong Chen

Air conditioning systems were invented to improve human comfort in a room or hall. An efficient air conditioner systems are always needed to minimize the power consumption. There are several settings with lot of control devices were introduced in the past years to achieve minimal energy consumption rate. Those control systems were minimized the energy consumption to certain limit without considering human comfort. The proposed model is designed to minimize the energy consumption with maximum human comfort. Several sensor modules were introduced in the model to predict human comfort level in a room or hall. The sensor data are taken as feedback to the air conditioning system for attaining maximum human comfort level. The proposed design is verified with energy consumption calculation and change in room temperature measurements.


2011 ◽  
Vol 264-265 ◽  
pp. 1568-1573 ◽  
Author(s):  
Seung Hyun Choi ◽  
Jae Yeol Kim

Spread of household air conditioning system is continued to be increased. Along with the spread, the acknowledgement on product quality by the customer is increasing. Therefore, not only basic performances like cooling and power consumption but also design and noise level of in-house and external unit become the important factors. Axial fan in the external unit of air conditioning system is for ventilation and air supplying unit, and the related products have been widely adopted as household electronics, automobile engine, big sized blower in factory, tunnel, and subway. In this study, commercial 3-winged propeller fan from S company is modified to 2-winged fan for the cost reduction. Using 3D modelling, the fan shape is modified, and analysis flow is adopted to provide the way to reduce cost while maintaining the same wind capacity.


2021 ◽  
pp. 102585
Author(s):  
Kasni Sumeru ◽  
Mohamad Firdaus Sukri ◽  
Triaji Pangripto Pramudantoro ◽  
Eddy Erham ◽  
Rizki Muliawan

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4663
Author(s):  
Tatsuhiro Yamamoto ◽  
Akihito Ozaki ◽  
Myonghyang Lee

The number of houses with large, continuous spaces has increased recently. With improvements in insulation performance, it has become possible to efficiently air condition such spaces using a single air conditioner. However, the air conditioning efficiency depends on the placement of the air conditioner. The only way to determine the optimal placement of such air conditioners is to conduct an experiment or use computational fluid dynamic analysis. However, because the analysis is performed over a limited period, it is difficult to consider non-stationarity effects without using an energy simulation. Therefore, in this study, energy simulations and computational fluid dynamics analyses were coupled to develop a thermal environment analysis method that considers non-stationarity effects, and various air conditioner arrangements were investigated to demonstrate the applicability of the proposed method. The accuracy verification results generally followed the experimental results. A case study was conducted using the calculated boundary conditions, and the results showed that the placement of two air conditioners in the target experimental house could provide sufficient air conditioning during both winter and summer. Our results suggest that this method can be used to conduct preliminary studies if the necessary data are available during design or if an experimental house is used.


Author(s):  
Gurubalan Annadurai ◽  
Maiya M.P. ◽  
Patrick Geoghegan ◽  
Carey Simonson

Abstract Air conditioning (AC) systems consume the maximum proportion of the total electricity used in the building sector. The demand of AC systems is expected to increase exponentially in the coming years due to various reasons such as climate change, increasing affordability and increase in living floor space. Membrane-based liquid desiccant AC system along with energy recovery ventilating equipment is considered as a prospective alternative to the conventional air conditioning system (CACS) and has the potential to meet the increasing current and future AC demand in a sustainable manner. Its efficiency and energy saving potential with respect to CACS depends on the performance of the membrane-based dehumidifier, regenerator and energy recovery ventilating equipment which are commonly referred to as membrane energy exchangers (MEEs). MEE is an indirect exchanger type in which the working streams are separated by a porous membrane. This intermediate membrane creates an additional resistance for the heat and mass transfer process in the MEE. To reduce the resistance, this study experimentally and numerically investigates the influence of ultrasound on the performance of the MEE for dehumidification, humidification (applicable for membrane-based evaporative cooling and desiccant regeneration devices) and energy recovery processes. It is found that the vibration due to ultrasound has the potential to improve the effectiveness of the MEE by 55% in the dehumidification process and by 65% in the humidification and energy recovery processes.


Author(s):  
I Nengah Ardita ◽  
◽  
I Gusti Agung Bagus Wirajati ◽  
I Dewa Made Susila ◽  
Sudirman Sudirman ◽  
...  

Split air conditioning (AC) is the most widely used in the community for both commercial and domestic utilities. At the present refrigerant which used in Split AC is mostly common group of HFCs, such as R410a. R410a is a zeotropic refrigerant and if there is a leak in the system, it cannot be added this refrigerant. This will increase the cost of maintenance. The aims of this research is to investigate the retrofit of R410a with R32 on the Split AC system. The R32 is chosen because it has higher latent evaporation heat at the same temperature and has less effect on global warming. The refrigeration effect, the power consumption and the system performance are the main three quantities that want to be examined in this research which are observed before and after retrofit. Experimental investigation conducted during this research, including design and manufacture of experimental equipment, calibration and tools installment, collecting the experimental data and analysis by quantitative description method before and after retrofit. The results informed that cooling effect increased during the research, but the COP system has a slight decrease about 4%. R32 refrigerant is quite feasible as a retrofit refrigerant to R410a refrigerant.


Sign in / Sign up

Export Citation Format

Share Document