scholarly journals A Study on machine learning methods and applications in genetics and genomics

2018 ◽  
Vol 7 (1.7) ◽  
pp. 201
Author(s):  
K Jayanthi ◽  
C Mahesh

Machine learning enables computers to help humans in analysing knowledge from large, complex data sets. One of the complex data is genetics and genomic data which needs to analyse various set of functions automatically by the computers. Hope this machine learning methods can provide more useful for making these data for further usage like gene prediction, gene expression, gene ontology, gene finding, gene editing and etc. The purpose of this study is to explore some machine learning applications and algorithms to genetic and genomic data. At the end of this study we conclude the following topics classifications of machine learning problems: supervised, unsupervised and semi supervised, which type of method is suitable for various problems in genomics, applications of machine learning and future views of machine learning in genomics.

2006 ◽  
Vol 2 ◽  
pp. 117693510600200 ◽  
Author(s):  
Joseph A. Cruz ◽  
David S. Wishart

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.


Author(s):  
Du Zhang

Software engineering research and practice thus far are primarily conducted in a value-neutral setting where each artifact in software development such as requirement, use case, test case, and defect, is treated as equally important during a software system development process. There are a number of shortcomings of such value-neutral software engineering. Value-based software engineering is to integrate value considerations into the full range of existing and emerging software engineering principles and practices. Machine learning has been playing an increasingly important role in helping develop and maintain large and complex software systems. However, machine learning applications to software engineering have been largely confined to the value-neutral software engineering setting. In this paper, the general message to be conveyed is to apply machine learning methods and algorithms to value-based software engineering. The training data or the background knowledge or domain theory or heuristics or bias used by machine learning methods in generating target models or functions should be aligned with stakeholders’ value propositions. An initial research agenda is proposed for machine learning in value-based software engineering.


2019 ◽  
Vol 24 (34) ◽  
pp. 3998-4006
Author(s):  
Shijie Fan ◽  
Yu Chen ◽  
Cheng Luo ◽  
Fanwang Meng

Background: On a tide of big data, machine learning is coming to its day. Referring to huge amounts of epigenetic data coming from biological experiments and clinic, machine learning can help in detecting epigenetic features in genome, finding correlations between phenotypes and modifications in histone or genes, accelerating the screen of lead compounds targeting epigenetics diseases and many other aspects around the study on epigenetics, which consequently realizes the hope of precision medicine. Methods: In this minireview, we will focus on reviewing the fundamentals and applications of machine learning methods which are regularly used in epigenetics filed and explain their features. Their advantages and disadvantages will also be discussed. Results: Machine learning algorithms have accelerated studies in precision medicine targeting epigenetics diseases. Conclusion: In order to make full use of machine learning algorithms, one should get familiar with the pros and cons of them, which will benefit from big data by choosing the most suitable method(s).


Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


2020 ◽  
Vol 4 (2) ◽  
pp. 61
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia ◽  
Goram Gohel

Advanced manufacturing techniques, such as automated fiber placement and additive manufacturing enables the fabrication of fiber-reinforced polymer composite components with customized material and structural configurations. In order to take advantage of this customizability, the design process for fiber-reinforced polymer composite components needs to be improved. Machine learning methods have been identified as potential techniques capable of handling the complexity of the design problem. In this review, the applications of machine learning methods in various aspects of structural component design are discussed. They include studies on microstructure-based material design, applications of machine learning models in stress analysis, and topology optimization of fiber-reinforced polymer composites. A design automation framework for performance-optimized fiber-reinforced polymer composite components is also proposed. The proposed framework aims to provide a comprehensive and efficient approach for the design and optimization of fiber-reinforced polymer composite components. The challenges in building the models required for the proposed framework are also discussed briefly.


2021 ◽  
Vol 921 (2) ◽  
pp. 177
Author(s):  
Regina Sarmiento ◽  
Marc Huertas-Company ◽  
Johan H. Knapen ◽  
Sebastián F. Sánchez ◽  
Helena Domínguez Sánchez ◽  
...  

Abstract As available data sets grow in size and complexity, advanced visualization tools enabling their exploration and analysis become more important. In modern astronomy, integral field spectroscopic galaxy surveys are a clear example of increasing high dimensionality and complex data sets, which challenges the traditional methods used to extract the physical information they contain. We present the use of a novel self-supervised machine-learning method to visualize the multidimensional information on stellar population and kinematics in the MaNGA survey in a 2D plane. Our framework is insensitive to nonphysical properties such as the size of the integral field unit and is therefore able to order galaxies according to their resolved physical properties. Using the extracted representations, we study how galaxies distribute based on their resolved and global physical properties. We show that even when exclusively using information about the internal structure, galaxies naturally cluster into two well-known categories, rotating main-sequence disks and massive slow rotators, from a purely data-driven perspective, hence confirming distinct assembly channels. Low-mass rotation-dominated quenched galaxies appear as a third cluster only if information about the integrated physical properties is preserved, suggesting a mixture of assembly processes for these galaxies without any particular signature in their internal kinematics that distinguishes them from the two main groups. The framework for data exploration is publicly released with this publication, ready to be used with the MaNGA or other integral field data sets.


Sign in / Sign up

Export Citation Format

Share Document