scholarly journals Rheological evaluation of local clay samples in central region Ghana for oil well drilling fluid formulation

2018 ◽  
Vol 7 (1) ◽  
pp. 100
Author(s):  
Foster Gomado ◽  
Forson Kobina ◽  
Augustus Owusu Boadi ◽  
Yussif Moro Awelisah

The superb rheological features of bentonites makes them an excellent candidate in drilling operations. Its capacity of bentonite to swell and extend to a few times its unique volume gives it the gelling and viscosity controlling quality. The execution of clay or specifical bentonite as a great consistency controlling operator in drilling fluids largely depends on the great extent of its rheological conduct. Ghana as of late found oil and it has tossed a test to research to explore the utilization of local materials in the oil and gas operations. A rheological study was conducted on local clay samples from Ajumako, Saltpond and Winneba in the Central district of Ghana as a viscosifier in drilling muds. This will help to improve the local content of Ghana's oil and gas industry. Drilling muds were prepared from the samples in addition to a control mud using imported non-treated bentonite. The local clay samples were subjected rheological test where the flow behavior of the muds was determined by measuring the gel strength, plastic viscosity, and the yield point. The experimental values were compared to the API standards. It was revealed that the local clay had some potential features of bentonite and could be utilized as controlling operators in drilling fluids provided the clays are beneficiated to enhance their rheological properties. This novel tend to improve the local content in oil and gas industry in Ghana through the deployment of the local materials in oil and gas operations in the nation.

Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shafic Suleman ◽  
Joshua Jebuntie Zaato

AbstractThe need to develop and boost the potentials of Ghana’s upstream oil and gas activities has been advocated by policymakers, academics, and financial institutions since the discovery of oil and gas in commercial quantities. It has been argued that if well implemented, upstream activities have a trickledown effect on the local content policy linkages that apart from taxes, can lead to improved financial and social benefits. In this study, how Ghana can use local content policy in upstream oil and gas operations to maximum economic and social benefits for the good of the Ghana government, citizens, and the Multinational Oil Companies, is the main question to be answered? To address this question, comprehensive analysis of local content laws and policies and stakeholder consultations are conducted. The paper argues that an effective local content policy towards achieving sustainability in the upstream oil and gas industry demands balancing the needs of policymakers, local communities, Multinational Oil Companies, and regulators to succeed. The study recommends a local content implementation master plan; active participation of key stakeholders (government, citizens and Multinational Oil Companies); and integration of forward and backward linkages in the implementation of Ghana’s upstream local content laws and policies.


2016 ◽  
Vol 16 (2) ◽  
pp. 57-67
Author(s):  
M. Kmieć ◽  
B. Karpiński ◽  
M. Szkodo

Abstract The P110 steel specimens were subjected to ultrasonic cavitation erosion in different compositions of drilling muds and surfactant additive. The test procedure was based on ASTM-G-32 standard recommendations. API 5CT-P110 steel is used for pipes in oil and gas industry. The harsh environment and high velocity of flows poses corrosive and erosive threat on materials used there. The composition of drilling fluid influences its rheological properties and thus intensity of cavitation erosion. The erosion curves based on weight loss were measured.


Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2779 ◽  
Author(s):  
Jack Pegram ◽  
Gioia Falcone ◽  
Athanasios Kolios

Job role localization is a strategic local content solution used by countries bearing natural resource stocks to maximize the long-term benefits of exploring and producing them. Currently, there is significant variation in how countries and organizations plan and implement local content and job role localization strategies; hence, this paper aims to gather, classify, and discuss relevant literature with a view to identify best practices for future application. After a multi-dimensional discussion of key terms relevant to the topic, the drivers and theoretical underpinnings of local content are examined, followed by an assessment of job role localization literature qualifying enablers and barriers to localization. A critical discussion on the means of evaluating local content policies summarizes the findings of this critical review.


2019 ◽  
Vol 20 (1) ◽  
pp. 248
Author(s):  
Nor Adzwa Binti Rosli ◽  
Wan Asma Ibrahim ◽  
Zulkafli Hassan ◽  
Azizul Helmi Bin Sofian

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.


Author(s):  
Andreas Al-Kinani ◽  
Nihal Cakir ◽  
Theresa Baumgartner ◽  
Michael Stundner

This chapter describes a framework that captures knowledge in an organization and applies it in daily operations. Knowledge capturing is one of the biggest upcoming challenges to oil and gas organizations as operations become more remote, more challenging, and many experts are leaving the oil and gas industry. A methodology is described to capture the knowledge of experts centrally and apply it throughout all operations in the organization. Due to the fact that an asset team is facing different constraints and challenges throughout the lifetime of a field, the system needs to gather experience from decisions and learn together with the asset team. Technologies that are flexible enough to process uncertainties are discussed as well as the effect on people, processes, and organization.


Sign in / Sign up

Export Citation Format

Share Document