ENVIRONMENTAL DRILLING SOLUTIONS ON THE POLYMERIC BASIS

Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.

2014 ◽  
Vol 625 ◽  
pp. 526-529 ◽  
Author(s):  
Lim Symm Nee ◽  
Badrul Mohamed Jan ◽  
Brahim Si Ali ◽  
Ishenny Mohd Noor

It is an open secret that currently oil and gas industry is focusing on increasing hydrocarbon production through underbalanced drilling (UBD) and finding ways to ensure the drilling process is less harmful to the environment. Water-based biopolymer drilling fluids are preferred compared to oil based drilling fluids owing to the fact that it causes less pollution to the environment. This paper investigates the effects of varying concentrations of environmentally safe raw materials, namely glass bubbles, clay, xanthan gum and starch concentrations on the density of the formulated biopolymer drilling fluid to ensure that it is suitable for UBD. As material concentrations were varied, the density for each sample was measured at ambient temperature and pressure. Results showed that the final fluid densities are within acceptable values for UBD (6.78 to 6.86 lb/gal). It is concluded that the formulated water-based biopolymer drilling fluid is suitable to be used in UBD operation.


2018 ◽  
Vol 7 (1) ◽  
pp. 100
Author(s):  
Foster Gomado ◽  
Forson Kobina ◽  
Augustus Owusu Boadi ◽  
Yussif Moro Awelisah

The superb rheological features of bentonites makes them an excellent candidate in drilling operations. Its capacity of bentonite to swell and extend to a few times its unique volume gives it the gelling and viscosity controlling quality. The execution of clay or specifical bentonite as a great consistency controlling operator in drilling fluids largely depends on the great extent of its rheological conduct. Ghana as of late found oil and it has tossed a test to research to explore the utilization of local materials in the oil and gas operations. A rheological study was conducted on local clay samples from Ajumako, Saltpond and Winneba in the Central district of Ghana as a viscosifier in drilling muds. This will help to improve the local content of Ghana's oil and gas industry. Drilling muds were prepared from the samples in addition to a control mud using imported non-treated bentonite. The local clay samples were subjected rheological test where the flow behavior of the muds was determined by measuring the gel strength, plastic viscosity, and the yield point. The experimental values were compared to the API standards. It was revealed that the local clay had some potential features of bentonite and could be utilized as controlling operators in drilling fluids provided the clays are beneficiated to enhance their rheological properties. This novel tend to improve the local content in oil and gas industry in Ghana through the deployment of the local materials in oil and gas operations in the nation.


Author(s):  
Mesfin Belayneh ◽  
Bernt S. Aadnøy

Recently the application of nanomaterial is attracting the oil and gas industry. The preliminary nanomaterials research results show an improving performance of cement, drilling fluid and Enhanced Oil Recovery. In this paper, the effect of nano Silicon dioxide (SiO2) on polymer (HV-CMC, Xanthan gum, LV-CMC) and salt (KCl, NaCl) treated bentonite drilling fluid systems has been studied at room temperature. The results show that the performance of nano SiO2 in bentonite mud system depends on its concentration and the types of salt and polymer systems used. In the considered fluid systems, it is also observed that the addition of about 0.06% SiO2 influences rheology, and filtrate loss of the drilling fluid systems. The viscoelasticity of the selected best system further studied and their hole -cleaning and hydraulics performances are simulated. The overall result shows that the formulated optimum concentration of nano-system shows good performances and rheological behavior.


2021 ◽  
Vol 6 (7) ◽  
pp. 33-37
Author(s):  
A. D. I. Sulaiman ◽  
M. B. Adamu ◽  
Usman Hassan ◽  
S. M. Aliyu

Progress in drilling engineering demands more sophistication from the drilling mud in order to enhance the usage of drilling fluids, hence numerous additives were introduced, and a simple fluid became a complicated mixture of liquid, solid and chemicals. Some of the challenges with the existing drilling fluid additives has to do with compatibility, degradability, safety, cost, and environmental friendliness. Studies have been carried out on the economic benefits of Cissus Populnea which includes in areas of food, medicine, shelter, and transport but much attention has been paid to its applications in the Oil and Gas industry. This study investigates the rheological properties of Cissus Populnea for application as drilling fluid additive (viscosifier) in Water Based Drilling Mud. Fresh roots, stems and leaves of cissus populnea were sourced from Bayara, Bauchi State. Some liquid exudates of cissus populnea were collected and stored for analysis while some of the samples were dried and grinded in to powdered form. Exudate of the samples were characterized by FTIR, XRD and XRF. Drilling mud was formulated with the samples cisssus populnea and bentonite at different temperatures. The rheology of the formulated drilling mud was investigated and compared with that formulated using bentonite and carboxymethyl cellulose (CMC). Results from X-ray Fluorescence analysis show that the chemical composition of Cissus populnea stem and root are similar when comparing their major components (In2O3 and CaO), while that of leaf has its major components to be In2O3 and Cl. Therefore, in this research work, experiments were conducted with only stem and leaf since stem and roots have common features. From the results of FTIR spectra, the stem of cissus populnea has an OH peak wavelength of 3487.42 cm-1 while that of leave is 3340.82 cm-1. The diffractogram of the stem of cissus populnea was observed at 2q = 22.67o which is very close to that of CMC (2θ = 20.31o) while the intense peaks of leaf were observed at around 28.65o. Viscosity of cissus populnea was investigated and found to be decreasing with the increase in temperature for stem exudate. While for leaf exudate, the viscosity was rather increasing with the increase in temperature at temperatures below 35 oC and then continue to decrease with the increase in temperature. The outcome of this research has confirmed the applicability of cissus populnea for drilling fluid additives, viscosifier.


Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Author(s):  
Franziska Lehmann ◽  
Katja Beier ◽  
Anne Schulz ◽  
Erik Anders

Modern rheological analyses provide good possibilities to understand the deformation and flow of fluids under different conditions. These methods used so far in the food industry as well as in the paints and coatings industry should transferred to the oil and gas industry, especially to the drilling fluid sector, to understand the drilling fluid behavior under borehole conditions. Traditionally, the rheology of drilling fluids is based on measurements under atmospheric conditions. The present study describes a new HT/HP measuring system by Anton Paar GmbH consisting of a modern rheometer including a high-pressure cell. This new system allows rheological analyses under a pressure up to 1000 bar and a temperature up to 300 °C. In consequence it is possible to observe conventional challenges within the drilling fluid sector under new points of view. Within the present study different drilling fluid systems were analyzed under common as well as under new rheological aspects. The results of both measuring systems were compared to each other. Furthermore, drilling fluid properties such as density, filtration and settling behavior were determined under different temperature regimes. Regarding to the operating principle of the electric impulse drilling (EID) technique the electric conductivity plays an important role and has to be taken into account. The results of these tests are also presented shortly.


Author(s):  
Mritunjoy Dihingia

In recent times, with the advent of exploSration activities in deeper hydrocarbon reserves, drilling of wells in HPHT conditions is one of the most studied field in the upstream oil and gas industry. Water-based fluids are the most common and frequently used drilling fluids oil and gas well construction. Although, water-based drilling fluids are environment friendly and relatively in-expensive, it is often associated with many problems when used in HPHT conditions. In order to overcome these problems in such viable conditions, modified surfactants are used with the mud to counteract the problems associated with it. This paper discusses the different applications of anionic and non-ionic surfactants in water-based drilling fluids both in laboratory and field scales. The paper also discusses the mechanisms of the surfactants and the effect on various mud properties to overcome hole problems like wellbore instability, rheology and filtration loss, foaming and flocculation of mud.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


2019 ◽  
Vol 20 (1) ◽  
pp. 248
Author(s):  
Nor Adzwa Binti Rosli ◽  
Wan Asma Ibrahim ◽  
Zulkafli Hassan ◽  
Azizul Helmi Bin Sofian

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.


Sign in / Sign up

Export Citation Format

Share Document