scholarly journals Investigation of Beam Column Joint with Beam Weak in Shear under Monotonic Loading

2018 ◽  
Vol 7 (2.20) ◽  
pp. 182
Author(s):  
B Mounika ◽  
P Poluraju

Earthquake affected structures, mostly failure occur at beam column joints (BCJ). BCJs are categorized according to their geometrical grouping as Interior, Exterior, and Corner joints. Exterior beam column joint (i.e., terminating the beam on one of the column faces) was the most vulnerable one with respect to the plane of loading. The present study aims at ductility behaviour of exterior BCJ with conventional reinforcement using the code IS 456-2000 and with special confining reinforcement using the Code IS 13920-2016. Four number of beam-column joint specimens are considered in which the first one is detailed as per IS 456-2000, the second one as per IS 13920-2016 and the other two with 50% and 30% reduction of shear reinforcement was provided while compared with the first specimen. It is mainly to satisfy the strong column-weak beam concept as the main parameter. The test was carried out on the loading frame with hinged conditions to the column both ends, and the load is applied at the tip of the beam. The experimental studies are proven with an analytical study carried out by finite element model by using ANSYS and disparate parameters are assessed both experimentally and analytically.  

2012 ◽  
Vol 446-449 ◽  
pp. 949-953
Author(s):  
Ya Ni Lu ◽  
Tao Li Xiao

Special load has produced serious damage to the concrete pavement because of the great gross weight and heavy axle load, but the present specification has not mentioned this kind of load. On this occasion, Several conditions of critical load are identified through ANSYS finite element model analysis and the formula through statistical regression analysis to the bottom maximum tension stress is drawn up. Which can not only guide the concrete pavement design under the special load but also the result may be referred by the other kinds of engineering.


2012 ◽  
Vol 178-181 ◽  
pp. 1495-1498
Author(s):  
Li Jun Suo

Load stress, which is caused by traffic loading, is important parameter used in the analysis of the new pavement design. In order to study the load stress of lean concrete base in the asphalt pavement, first of all, three–dimension finite element model of the asphalt pavement is established. The main objectives of the paper are investigated. One is calculation for load stress of lean concrete base, and the other is analysis for relationship between load stress of lean concrete base and parameters, such as thickness, modulus. The results show that load stress of lean concrete base decreases, decreases and increases with increase of base’s thickness, surface’s thickness and ratio of base’s modulus to foundation’s modulus respectively. So far as the traffic axle loading is concerned, it has a significant impact on load stress of lean concrete base, and it can be seen from results that when load is taken from 100kN to 220kN, load stress increases quickly with the increase of the traffic axle loading.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


Author(s):  
Babak Ebrahimi ◽  
Amir Khajepour ◽  
Todd Deaville

This paper discusses the modeling and analysis of a novel audio subwoofer system for automotive applications using the automobile windshield glass. The use of a piezo-electric actuator coupled with a mechanical amplifier linked to a large glass panel provides a highly efficient method of producing sound. The proposed subwoofer system has the advantage over existing conventional systems of not only reducing the weight of the automobile, but also a significant power savings resulting in an increase of expected fuel economy. Among various design challenges, the glass-sealing design is of huge importance, as it affects the system dynamic response and so the output sound characteristics. The main goal in this manuscript is to evaluate different glass-sealing design configurations by providing a comprehensive Finite Element model of the system. To do so, a comprehensive, yet simplified FE model is developed, and experimental studies are performed in the component level to fine-tune and verify the model. Harmonic response of the system for each sealing configuration design is obtained in the frequency range of 0–200 Hz, and the results are compared and discussed. The finite element model is also beneficial in preliminary design of other components as well as the exciter placement, and predicting the performance of the overall system.


2012 ◽  
Vol 178-181 ◽  
pp. 1402-1405
Author(s):  
Li Jun Suo

In order to study the shearing stress of asphalt surface on lean concrete base, first of all, three–dimension finite element model of the asphalt pavement is established. The main objectives of the paper are investigated. One is calculation for shearing stress of asphalt surface in transverse contraction joint of lean concrete base, and the other is analysis for relationship between load stress of asphalt surface and parameters, such as thickness, modulus. The results show that maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface’s modulus, the surface’s thickness, base’s thickness and ratio of base’s modulus to foundation’s modulus.


2019 ◽  
Vol 3 (4) ◽  
pp. 222-229
Author(s):  
A. V. Azin ◽  
S. A. Kuznetsov ◽  
S. A. Ponomarev ◽  
S. V. Ponomarev ◽  
S. V. Rikkonen

In the article the results of a new type of piezo-electric step-engine research are presented. The original construct of piezo-electric step-engine is contained in special engineering lever called grab device that can organize back and forward rod’s motion with only one piezo element activity. To choose the effective process of piezo-electric step-engine work the mathematical model was created. This mathematical model describes inner piezo-electric step-engine process with features of contact and electroelastic deformation. Using the ANSYS application package, а finite element model of the piezo-electric step-engine has been developed. This finite element model allows estimate the stress-strain state of structural elements of the piezo-electric step-engine and determine the effective step-by-step operation mode of the piezo-electric step-engine. Using the finite element model, the influence of the piezo-electric step-engine operating mode parameters on the amount of displacement of the rod is studied. According to results of experimental studies, the proposed numerical model allows to simulate the dynamic process of step-operation of a piezo-electric step-engine with an error of no more than 6 %. This finite element model include the external load on piezo-electric step-engine and can be used to design piezo-electric step-engine of various fields of application.


2018 ◽  
Vol 38 (2) ◽  
pp. 131-142
Author(s):  
Dan Zhang ◽  
Zhong Tao ◽  
Lei Zhang

A review on the previous studies shows that limited analytical or experimental studies on the low-rise concealed truss shear walls with external columns under monotonic loading have already been conducted. The combination of concealed truss was welded to I-shaped steel frame and flat steel support. Two different aspect ratio composite shear walls were tested under static monotonic loading, and the failure mode, bearing capacity, ductility and stiffness were explored. A finite element model was developed and used to simulate the composite shear walls under constant axial load and lateral loading. The comparison of test results confirmed that the finite element model could predict the behavior of composite shear walls accurately. Meanwhile, stress analyses of the specimens were studied to simulate stress distribution of reinforcement, and to analyze the steel of composite shear wall with external columns at different loading stages. Taken together, this study could be a basis for developing an accurately simplified model.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
D. Carnelli ◽  
D. Gastaldi ◽  
V. Sassi ◽  
R. Contro ◽  
C. Ortiz ◽  
...  

A finite element model was developed for numerical simulations of nanoindentation tests on cortical bone. The model allows for anisotropic elastic and post-yield behavior of the tissue. The material model for the post-yield behavior was obtained through a suitable linear transformation of the stress tensor components to define the properties of the real anisotropic material in terms of a fictitious isotropic solid. A tension-compression yield stress mismatch and a direction-dependent yield stress are allowed for. The constitutive parameters are determined on the basis of literature experimental data. Indentation experiments along the axial (the longitudinal direction of long bones) and transverse directions have been simulated with the purpose to calculate the indentation moduli and the tissue hardness in both the indentation directions. The results have shown that the transverse to axial mismatch of indentation moduli was correctly simulated regardless of the constitutive parameters used to describe the post-yield behavior. The axial to transverse hardness mismatch observed in experimental studies (see, for example, Rho et al. [1999, “Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation,” J. Biomed. Mater. Res., 45, pp. 48–54] for results on human tibial cortical bone) can be correctly simulated through an anisotropic yield constitutive model. Furthermore, previous experimental results have shown that cortical bone tissue subject to nanoindentation does not exhibit piling-up. The numerical model presented in this paper shows that the probe tip-tissue friction and the post-yield deformation modes play a relevant role in this respect; in particular, a small dilatation angle, ruling the volumetric inelastic strain, is required to approach the experimental findings.


2005 ◽  
Vol 293-294 ◽  
pp. 401-408
Author(s):  
Xuan Yang Lei ◽  
Gui Cai Zhang ◽  
Xi Geng Song ◽  
Jin Chen ◽  
Guang Ming Dong

In this paper, a simplified finite element model of the cracked crankshaft is proposed, and a new method for simulating the nonlinear vibration of operating crankshaft with several cracks is presented. For crankshaft, cracks occur frequently in the parts of crankpin-web fillet region and the edge of oil aperture because of fatigue or damage. According to the characteristic of those cracks, the cracked parts are modeled by the corresponding cracked spatial finite elements respectively, and two cracked elements are discussed in this study. The other, un-cracked, crankshaft parts are modeled by spatial Timoshenko beam elements. Flywheel and front pulley are simplified as lumped mass elements, and main bearings are simulated by equivalent linear springs and dashpots. In order to find the dynamic response of crankshaft-bearing system, a right-handed rotating coordinate system attached to crankshaft is applied. Based on the proposed finite element model, the breathing behavior of cracks in operating crankshaft is studied, and the nonlinear motion equation with variational stiffness is formed. Finally, a four-in-line crankshaft is taken as an example, and its vibration response corresponding to different kinds of crack are calculated and analyzed. Some conclusions are drawn, and a foundation is laid for diagnosing crack fault of crankshaft.


Author(s):  
C R Gentle ◽  
W Z Golinski ◽  
F Heitplatz

The term ‘whiplash’ was initially used to describe injuries to the neck caused by the head being forced backwards during a rear-end collision in cars without head restraints. The addition of head restraints in the 1970s was expected to solve this problem by preventing excessive extension of the neck but experience suggests the problem still exists. This paper reviews available experimental studies of whiplash and uses the data to construct a finite element model which is capable of dynamically simulating whiplash collisions and predicting the forces in all the relevant neck ligaments. For the first time, it is shown that trauma occurs long before the head hits the head restraint as a result of displacement between the head and the torso caused by the head's inertia leading to markedly different acceleration histories. It is concluded that experimental and computational studies must be used together to produce progress in biomechanical studies.


Sign in / Sign up

Export Citation Format

Share Document