scholarly journals Application of klauder wavelet for generation of synthetic seismic signals

2018 ◽  
Vol 7 (2.7) ◽  
pp. 903
Author(s):  
S Neelima ◽  
A Saritha ◽  
K S.Ramesh ◽  
S Koteswara rao

Analysis of reflected seismic waves gives the information about the earth and its inner core. This aids in monitoring earthquake, petroleum exploration, determination of the earth’s core structure, etc. Wavelet transforms is an efficient tool for analysis of seismic reflected signals. These transforms helps in complete extraction of the seismic signal buried in noise. In this paper an attempt is made to analyze a synthetic seismic signal by using Klauder wavelets.  The synthetic seismic signal is extracted by convoluting with the Klauder wavelet. Noise is completely removed as the wavelet spans a large spectrum of signals.  

Author(s):  
Olga Popova

The asteroid impact near the Russian city of Chelyabinsk on February 15, 2013, was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding 1 million. On clear morning at 9:20 a.m. local time, an asteroid about 19 m in size entered the Earth atmosphere near southern Ural Mountains (Russia) and, with its bright illumination, attracted the attention of hundreds of thousands of people. Dust trail in the atmosphere after the bolide was tens of kilometers long and was visible for several hours. Thousands of different size meteorites were found in the areas south-southwest of Chelyabinsk. A powerful airburst, which was formed due to meteoroid energy deposition, shattered thousands of windows and doors in Chelyabinsk and wide surroundings, with flying glass injuring many residents. The entrance and destruction of the 500-kt Chelyabinsk asteroid produced a number of observable effects, including light and thermal radiation; acoustic, infrasound, blast, and seismic waves; and release of interplanetary substance. This unexpected and unusual event is the most well-documented bolide airburst, and it attracted worldwide attention. The airburst was observed globally by multiple instruments. Analyses of the observational data allowed determination of the size of the body that caused the superbolide, its velocity, its trajectory, its behavior in the atmosphere, the strength of the blast wave, and other characteristics. The entry of the 19-m-diameter Chelyabinsk asteroid provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and to calculate the damaging effects. The recovered meteorite material was characterized as brecciated LL5 ordinary chondrite, in which three different lithologies can be distinguished (light-colored, dark-colored, and impact-melt). The structure and properties of meteorites demonstrate that before encountering Earth, the Chelyabinsk asteroid had experienced a very complex history involving at least a few impacts with other bodies and thermal metamorphism. The Chelyabinsk airburst of February 15, 2013, was exceptional because of the large kinetic energy of the impacting body and the damaging airburst that was generated. Before the event, decameter-sized objects were considered to be safe. With the Chelyabinsk event, it is possible, for the first time, to link the damage from an impact event to a well-determined impact energy in order to assess the future hazards of asteroids to lives and property.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 794
Author(s):  
E Sai Sumanth ◽  
V Joseph ◽  
Dr K S Ramesh ◽  
Dr S Koteswara Rao

Investigation of signals reflected from earth’s surface and its crust helps in understanding its core structure. Wavelet transforms is one of the sophisticated tools for analyzing the seismic reflections. In the present work a synthetic seismic signal contaminated with noise is synthesized  and analyzed using Ormsby wavelet[1]. The wavelet transform has efficiently extracted the spectra of the synthetic seismic signal as it smoothens the noise present in the data and upgrades the flag quality of the seismic data due to termers. Ormsby wavelet gives the most redefined spectrum of the input wave so it could be used for the analysis of the seismic reflections. 


2016 ◽  
Vol 4 (2) ◽  
pp. 285-307 ◽  
Author(s):  
Arnaud Burtin ◽  
Niels Hovius ◽  
Jens M. Turowski

Abstract. In seismology, the signal is usually analysed for earthquake data, but earthquakes represent less than 1 % of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to the development of new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor mass transfer throughout the landscape. Surface processes vary in nature, mechanism, magnitude, space and time, and this variability can be observed in the seismic signals. This contribution gives an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time–frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and to improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.


2019 ◽  
Vol 220 (2) ◽  
pp. 759-767 ◽  
Author(s):  
I Nurul Huda ◽  
S Lambert ◽  
C Bizouard ◽  
Y Ziegler

SUMMARY The nutation harmonic terms are commonly determined from celestial pole offset series produced from very long baseline interferometry (VLBI) time delay analysis. This approach is called an indirect approach. As VLBI observations are treated independently for every session, this approach has some deficiencies such as a lack of consistency in the geometry of the session. To tackle this problem, we propose to directly estimate nutation terms from the whole set of VLBI time delays, hereafter referred as a direct approach, in which the nutation amplitudes are taken as global parameters. This approach allows us to reduce the correlations and the formal errors and gives significant discrepancies for the amplitude of some nutation terms. This paper is also dedicated to the determination of the Earth resonance parameters, named polar motion, free core nutation, and free inner core nutation. No statistically significant difference has been found between the estimates of resonance parameters based upon ‘direct’ and ‘indirect’ nutation terms. The inclusion of a complete atmospheric-oceanic non-tidal correction to the nutation amplitudes significantly affected the estimates of the free core nutation and the free inner core nutation resonant frequencies. Finally, we analyzed the frequency sensitivity of polar motion resonance and found that this resonance is mostly determined by the prograde nutation terms of period smaller than 386 d.


1920 ◽  
Vol 39 ◽  
pp. 157-208 ◽  
Author(s):  
C. G. Knott

This paper is a continuation of two papers on Seismic Radiations published in the Proceedings of the Royal Society of Edinburgh, vol. xxviii, pp. 217–230 (1907–8) and vol. xxx, pp. 23–37 (1909). The object of the present communication is to place on record a new determination of the laws of propagation of seismic waves based upon a method of calculation in which no assumptions are made as to the functional relation between velocity of propagation and distance from the earth's centre. References to the work of others will be given incidentally as occasion arises.


2014 ◽  
Vol 2 (2) ◽  
pp. 1217-1267
Author(s):  
A. Burtin ◽  
N. Hovius ◽  
J. M. Turowski

Abstract. In seismology, the signal is usually analysed for earthquake data, but these represent less than 1% of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to develop new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor its transfer through the landscape. Surface processes vary in nature, mechanism, magnitude and space and time, and this variability can be observed in the seismic signals. This contribution aims to give an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.


2016 ◽  
Vol 8 (3) ◽  
pp. 8-18
Author(s):  
Phan Dang Cau

Suppose by the  irregularity of the reflectivity of the earth a seismic signal is not always stationary in usual sense, but only long-run stationary (see [6,7]). Then  there arises a question: ‘why is wiener filter, which is  as well known is used in prediction and filtering of ergodic stationary time series, also applicable in processing seismic signals? In this paper we try to give answer to this question.


1970 ◽  
Vol 13 (2) ◽  
Author(s):  
Muslih Husein
Keyword(s):  
The West ◽  
New Moon ◽  

Hisab dan rukyat, hakikatnya, adalah cara untuk mengetahui pergantian bulan. Kajian ini memperlihatkan beberapa temuan. Pertama, korelasi antara hadis Kuraib dan terjadinya perbedaan penetapan awal Ramadan, Syawal, dan Dzul Hijjah di Indonesia. Kementerian Agama Republik Indonesia telah menetapkan bahwa Indonesia secara keseluruhan menjadi satu wilayah hukum (wilayatul hukmi). Kedua, tentang keberhasilan rukyat al-hilal di satu kawasan yang diberlakukan bagi kawasan lain di muka bumi. Perlu diketahui bersama bahwa visibilitas pertama hilal tidak meliputi seluruh muka bumi pada hari yang sama, melainkan membelahnya menjadi dua bagian: (1) bagian sebelah Barat yang dapat melihat hilal dan (2) bagian sebelah Timur yang tidak dapat melihat hilal.Hisab and rukyat is a way to know the turn of the month. This study shows several findings. First is the correlation between Kuraib traditions and differences in the determination of the beginning of Ramadan, Shawwal, and Dhul-Hijjah in Indonesia. Ministry of Religious Affairs of the Republic of Indonesia has stated that Indonesia as a whole into a single jurisdiction (wilayatul hukmi). Second, on the success rukyat alhilal in one area that applied to other regions of earth. Important to know that the first visibility of the new moon does not cover the entire face of the earth on the same day, but splitting it into two parts: (1) part of the West to see the new moon, and (2) part of the East were not able to see the new moon.


2020 ◽  
Vol 3 (2) ◽  
pp. 58-73
Author(s):  
Vijay Bhagat ◽  
Ajaykumar Kada ◽  
Suresh Kumar

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high expensive satellite remote sensing, manned aerial surveys, and labors time consuming conventional fieldwork techniques of data collection. UAS can provide spatial data at very fine (up to a few mm) and desirable temporal resolution. Several studies have used vegetation indices (VIs) calculated from UAS based on optical- and MSS-datasets to model the parameters of biophysical units of the Earth surface. They have used different techniques of estimations, predictions and classifications. However, these results vary according to used datasets and techniques and appear very site-specific. These existing approaches aren’t optimal and applicable for all cases and need to be tested according to sensor category and different geophysical environmental conditions for global applications. UAS remote sensing is a challenging and interesting area of research for sustainable land management.


2018 ◽  
pp. 73-78
Author(s):  
Yu. V. Morozov ◽  
M. A. Rajfeld ◽  
A. A. Spektor

The paper proposes the model of a person seismic signal with noise for the investigation of passive seismic location system characteristics. The known models based on Gabor and Berlage pulses have been analyzed. These models are not able wholly to consider statistical properties of seismic signals. The proposed model is based on almost cyclic character of seismic signals, Gauss character of fluctuations inside a pulse, random amplitude change from pulse to pulse and relatively small fluctuation of separate pulses positions. The simulation procedure consists of passing the white noise through a linear generating filter with characteristics formed by real steps of a person, and the primary pulse sequence modulation by Gauss functions. The model permits to control the signal-to-noise ratio after its reduction to unity and to vary pulse shifts with respect to person steps irregularity. It has been shown that the model of a person seismic signal with noise agrees with experimental data.


Sign in / Sign up

Export Citation Format

Share Document