scholarly journals Detection of Node Failure Localization in Communication Networks

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1149
Author(s):  
Nidhi Shekhawat ◽  
Shanil Panchamia ◽  
Ushasukhanya S

We explore the capability of localizing node failures in communication networks from binary states (normal/failed) of end-to-end paths. Certain a set of nodes of importance, individually localizing failures inside this set necessitates that dissimilar noticeable path states connect with dissimilar node malfunction events. However, this circumstance is easier said than done to test on huge networks due to the requirement to itemise all promising node failures. Our first donation is a set of satisfactory/compulsory conditions for classifying a restricted numeral of failures within an uninformed node set that can be experienced in polynomial time. In adding up to network topology and positions of monitors, our circumstances also include restrictions forced by the penetrating mechanism used. We are here considering three probing mechanisms basically which differ according as to whether dimension paths are: (i) arbitrarily controllable; (ii) controllable but cycle-free; or (iii) uncontrollable (which are dogged by the evasion routing protocol). Our second donation is to calculate the potential of malfunction localization from beginning to end: 1) the utmost number of failures (wherever in the network) such that malfunctions inside a given node set can be exceptionally localized and 2) the major node set inside which failures can be exclusively localized underneath a given vault on the total amount of failures. Here both the methods in 1) and 2) can be transformed into the functions of a per-node property, which can be computed resourcefully based on the above satisfactory/compulsory conditions. We reveal how process 1) and 2) projected for enumerating malfunction localization capability can be used to calculate the collision of various parameters which includes topology, number of monitors, and probing mechanisms.  

The network topology of association was always active but the association between them may not be always connected and properties are restricted. On the time there is a chance of node failures and detecting the node failure is important. Two node failure detection schemes are implemented which are binary and non-binary feedback schemes. These schemes unite locality estimation, localized monitoring and node association. These results are applicable to both attached and detached networks. The schemes accomplish high disappointment discovery rates, low forged positive rates, and low correspondence overhead


2020 ◽  
Vol 13 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Neha Sharma ◽  
Sherin Zafar ◽  
Usha Batra

Background: Zone Routing Protocol is evolving as an efficient hybrid routing protocol with an extremely high potentiality owing to the integration of two radically different schemes, proactive and reactive in such a way that a balance between control overhead and latency is achieved. Its performance is impacted by various network conditions such as zone radius, network size, mobility, etc. Objective: The research work described in this paper focuses on improving the performance of zone routing protocol by reducing the amount of reactive traffic which is primarily responsible for degraded network performance in case of large networks. The usage of route aggregation approach helps in reducing the routing overhead and also help achieve performance optimization. Methods: The performance of proposed protocol is assessed under varying node size and mobility. Further applied is the firefly algorithm which aims to achieve global optimization that is quite difficult to achieve due to non-linearity of functions and multimodality of algorithms. For performance evaluation a set of benchmark functions are being adopted like, packet delivery ratio and end-to-end delay to validate the proposed approach. Results: Simulation results depict better performance of leading edge firefly algorithm when compared to zone routing protocol and route aggregation based zone routing protocol. The proposed leading edge FRA-ZRP approach shows major improvement between ZRP and FRA-ZRP in Packet Delivery Ratio. FRA-ZRP outperforms traditional ZRP and RA-ZRP even in terms of End to End Delay by reducing the delay and gaining a substantial QOS improvement. Conclusion: The achievement of proposed approach can be credited to the formation on zone head and attainment of route from the head hence reduced queuing of data packets due to control packets, by adopting FRA-ZRP approach. The routing optimized zone routing protocol using Route aggregation approach and FRA augments the QoS, which is the most crucial parameter for routing performance enhancement of MANET.


2014 ◽  
Vol 989-994 ◽  
pp. 4629-4632
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

Since the wireless mesh network topology dynamics and the radio channels instable, the design of wireless mesh network routing protocol become one of the key factors to determine the performance. This paper mainly studied the existing several kinds of typical three-layer mesh network routing protocol (DSDV and AODV), aimed at the defects of three-layer routing limited to the network topology changes, the paper proposed a network model based on two-layer routing. Forwarding the packet, establishing and maintaining the communication links are accomplished on the Mac layer. Simulation tests showed that two-layer routing has a big improvement on the efficiency of packet forwarding, and it effectively reduced the routing overhead and end-to-end delay simultaneously.


Author(s):  
RENDI DIAN PRASETIA ◽  
DOAN PERDANA ◽  
RIDHA MULDINA NEGARA

ABSTRAKSalah satu permasalahan di kota-kota besar adalah kemacetan lalu lintas yang disebabkan karena tidak mencukupinya ruas jalan, volume kendaraan yang begitu besar, persebaran kendaraan yang tidak merata dan lain-lain. Salah satu solusinya adalah para pengendara dapat menggunakan aplikasi peta digital pada smartphone-nya. Oleh karena itu perlu dilakukan pengimbangan beban trafik kendaraan. Pada penelitian ini akan dibahas mengenai kinerja VANET yang menggunakan protokol routing GPSR dan AODV dengan skema pengimbangan beban trafik kendaraan dengan pengaruh kepadatan node. Perancangan sistem simulasi terbagi menjadi dua subsistem yaitu subsistem mobilitas dan jaringan. Kemudian dilakukan pengimbangan beban trafik kendaraan, dan kinerja VANET akan diamati. Performansi dievaluasi dengan average end to end delay, throughput, dan packet delivery ratio. Nilai rata-rata throughput, PDR, delay untuk GPSR adalah 142.21 Kbps, 87.47 %, dan 82.83 ms. Sedangkan AODV adalah 119.81 Kbps, 86.67 %, dan 103.21 ms. Dari hasil penelitian nilai QoS performansi dari routing protocol GPSR lebih baik dari pada AODV pada VANET.Kata kunci: Vanet, Pengimbangan Beban, GPSR, AODV.ABSTRACTOne of the problems in big cities is congestion. The congestion is caused byinsufficient road segment, large volume of vehicles, unbalanced spread ofvehicles and others. One solution is that riders can use digital map applications on their smartphones. Therefore it is necessary to balancing the traffic load of vehicles. In this research will be discussed about VANET performance using GPSR and AODV routing protocol with vehicle traffic load balancing scheme with node density influence. The design of the simulation system is divided into two subsystems namely mobility and network subsystem. Then balancing the vehicle traffic load, and VANET performance will be observed. Performance is evaluated with the average end to end delay, throughput, and packet delivery ratio. The mean value of throughput, PDR, delay for GPSR respectively 142.21 Kbps, 87.47%, and 82.83 ms. While AODV is 119.81 Kbps, 86.67%, and 103.21 ms. From the simulation results can be concluded that the performance of GPSR is better than AODV on VANET. Keywords: Vanet, Load Balancing, GPSR, AODV.


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

Secure routing is considered as one of a key challenge in mesh networks because of its dynamic and broadcasting nature. The broadcasting nature of mesh environment invites number of security vulnerabilities to come and affect the network metrics drastically. Further, any node/link failure of a routed path may reduce the performance of the entire network. A number of secure routing protocols have been proposed by different researchers but enhancement of a single network parameter (i.e. security) may affect another performance metrics significantly i.e. throughput, end to end delay, packet delivery ratio etc. In order to ensure secure routing with improved network metrics, a Secure Buffer based Routing Protocol i.e. SBRP is proposed which ensures better network performance with increased level of security. SBRP protocol uses buffers at alternate positions to fasten re-routing mechanism during node/link failure and ensures the security using AES encryption. Further the protocol is analyzed against mAODV protocol in both static and dynamic environment in terms of security, packet delivery ratio, end to end delay and network throughput.


Author(s):  
Mohamed Amine Abid ◽  
Abdelfettah Belghith

In this paper, the authors propose a novel routing protocol driven by an asynchronous distributed cartography gathering algorithm. Each node senses its own dynamics and chooses locally an appropriate routing period size. As such stationary nodes generate little signaling traffic; fast moving nodes choose small routing periods to mitigate the effect of their mobility. Moreover, every node integrates a self regulating process that dynamically and constantly calibrates the chosen routing period to track changes in its dynamics. The performances of this proposed routing protocol are evaluated and compared to the known Optimized Link State Routing (OLSR) protocol through extensive simulations. The paper shows that the collected network cartography maintains a validity ratio near 100% even for high node speeds. The authors illustrate that the proposed routing protocol provides around 97% routing validity while the OLSR can hardly deliver more than 60% at moderate to high speeds and workloads. Finally, the protocol provides better throughput than OLSR, reaching a 50% increase at moderate to high speeds and workloads far less end-to-end delays.


Sign in / Sign up

Export Citation Format

Share Document