scholarly journals Study on strength and durability characteristics of polypropylene fiber reinforced blended concrete tiles

2018 ◽  
Vol 7 (3) ◽  
pp. 1544
Author(s):  
N K. Amudhavalli ◽  
M Harihanandh

Concrete is brittle and widely used as an artificial construction material with incorporation of cement, water and aggregate in necessary proportions. To overcome the brittle behavior of composites, fibers and admixture are added to the concrete. In this present investigation Polypropylene Fiber is added in varying percentage (0.2%, 0.4%, 0, 6%, 0.8% and 1%) to the weight of cement and constant percentage of Rice Husk Ash (15%) is replaced with cement. The polypropylene fiber reinforced blended concrete tiles of size 300mm x 300mm x 30mm are cast as per the code and tested at 28 days curing period. Flexural strength, Abrasion test, Dimensional quality and water absorption are studied. Among different proportion of Polypropylene Fiber Reinforced Blended Concrete, the best performance is achieved by the combination of 15% of Rice Husk Ash with 0.6% of Polypropylene Fiber.  

2021 ◽  
Vol 8 ◽  
Author(s):  
Osama Zaid ◽  
Jawad Ahmad ◽  
Muhammad Shahid Siddique ◽  
Fahid Aslam

The production of rice is significant worldwide; the husk produced is generally used as a combustible material for the preparation of paddies, delivering energy through direct combustion as well as by gasifying. Annually, 7.4 million tons of Rice Husk Ash (RHA) is produced and poses an incredible danger to the environment, harming the land and the encompassing zone where it is unloaded. In the transformation of rice husk to ash, the ignition cycle eliminates the natural products, leaving silica-rich remains. These silica-rich remains have proven to have potential to be utilized in concrete as a limited substitution of cement to enhance the concrete compressive strength. Steel fibers’ incorporation increases the concrete tensile strength, balances out concrete samples, and changes their brittle behavior to a more ductile response. In the current study, the influence of various doses of Rice Husk Ash (RHA) used in concrete in the presence and absence of steel fibers and concrete performance has been examined. A total of nine mixes have been designed: one was a control, four were without steel fibers containing only RHA, and the last four mixed RHA with steel fibers from 0.5 to 2%. Tests with 5, 10, 15, and 20% percentages of RHA replacing the concrete have been targeted. Results have been compared with the reference samples and the reasonability of adding Rice Husk Ash to concrete has been studied. From the results, it was noted that about 10% of cement might be replaced with Rice Husk Ash mixed in with steel fibers with almost equal compressive strength. Replacing more than 15% of cement with RHA will produce concrete with a low performance in terms of strength and durability.


2016 ◽  
Vol 111 ◽  
pp. 429-439 ◽  
Author(s):  
Ehsan Mohseni ◽  
Mojdeh Mehrinejad Khotbehsara ◽  
Farzad Naseri ◽  
Maryam Monazami ◽  
Prabir Sarker

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


2022 ◽  
pp. 61-92
Author(s):  
Zahid Hossain ◽  
Kazi Tamzidul Islam

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Neeraj Jain

Investigations carried out to study the effect of Cr (VI) (1000–3000 mg/l) on solidification and hydration behavior of Ordinary Portland cement (OPC) and rice husk ash (RHA) blended (10%, 20%, and 30%) cement show that addition of RHA accelerates final setting as compared to control samples (OPC) and retardation in setting time has been observed on increase in rice husk ash concentration (10%–30%). Solidification studies show that the compressive strength of controls and rice husk ash blended samples increases with increase in the curing period and maximum strength was observed with 20% RHA blended samples. With the increase in Cr (VI) concentrations, the strength of OPC and RHA blended samples decreases as compared to controls (without chromium). The results of Toxicity Characteristics Leaching Procedure (TCLP) test, (pH≅3), show that the retention capacity of OPC and RHA blended samples was in the range of 92% to 99% and the leached Cr (VI) concentration was under the allowable limit (5 mg/l) of U.S. EPA. The chemistry of influence of Cr (VI) on hydration of cement was examined by X-ray diffraction which shows the formation of various crystalline phases during solidification in rice hush ash blended cement.


Sign in / Sign up

Export Citation Format

Share Document