scholarly journals Effect of Superplasticizer on Strength and Durability of Rice Husk Ash Concrete

2021 ◽  
Vol 12 (3) ◽  
pp. 204-208
Author(s):  
V. N. Kanthe
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


2021 ◽  
Vol 8 ◽  
Author(s):  
Osama Zaid ◽  
Jawad Ahmad ◽  
Muhammad Shahid Siddique ◽  
Fahid Aslam

The production of rice is significant worldwide; the husk produced is generally used as a combustible material for the preparation of paddies, delivering energy through direct combustion as well as by gasifying. Annually, 7.4 million tons of Rice Husk Ash (RHA) is produced and poses an incredible danger to the environment, harming the land and the encompassing zone where it is unloaded. In the transformation of rice husk to ash, the ignition cycle eliminates the natural products, leaving silica-rich remains. These silica-rich remains have proven to have potential to be utilized in concrete as a limited substitution of cement to enhance the concrete compressive strength. Steel fibers’ incorporation increases the concrete tensile strength, balances out concrete samples, and changes their brittle behavior to a more ductile response. In the current study, the influence of various doses of Rice Husk Ash (RHA) used in concrete in the presence and absence of steel fibers and concrete performance has been examined. A total of nine mixes have been designed: one was a control, four were without steel fibers containing only RHA, and the last four mixed RHA with steel fibers from 0.5 to 2%. Tests with 5, 10, 15, and 20% percentages of RHA replacing the concrete have been targeted. Results have been compared with the reference samples and the reasonability of adding Rice Husk Ash to concrete has been studied. From the results, it was noted that about 10% of cement might be replaced with Rice Husk Ash mixed in with steel fibers with almost equal compressive strength. Replacing more than 15% of cement with RHA will produce concrete with a low performance in terms of strength and durability.


2018 ◽  
Vol 7 (3) ◽  
pp. 1544
Author(s):  
N K. Amudhavalli ◽  
M Harihanandh

Concrete is brittle and widely used as an artificial construction material with incorporation of cement, water and aggregate in necessary proportions. To overcome the brittle behavior of composites, fibers and admixture are added to the concrete. In this present investigation Polypropylene Fiber is added in varying percentage (0.2%, 0.4%, 0, 6%, 0.8% and 1%) to the weight of cement and constant percentage of Rice Husk Ash (15%) is replaced with cement. The polypropylene fiber reinforced blended concrete tiles of size 300mm x 300mm x 30mm are cast as per the code and tested at 28 days curing period. Flexural strength, Abrasion test, Dimensional quality and water absorption are studied. Among different proportion of Polypropylene Fiber Reinforced Blended Concrete, the best performance is achieved by the combination of 15% of Rice Husk Ash with 0.6% of Polypropylene Fiber.  


2013 ◽  
Vol 773 ◽  
pp. 293-297 ◽  
Author(s):  
Lee Kuo Lin ◽  
Wei Sheng Wu ◽  
Hubert Lee

During recent years, the Taiwan government launches issues of green building , sustainable engineering , carbon reduction and etc. , to promote balance construction and environment ecology. One of the most important materials in those engineering issues is cement which is used widely in construction industry. Cement emits 0.85 tons of carbon dioxide (CO2) for each ton of cement used in average. This not only causes the waste of energy but also againsts the conception of environmental protection. This research uses the rice husk ash (RHA) which people always regards as the waste material as a pozzolanic material to replace part of cement to make high performance concrete (HPC). Then makes the value analysis and properties investigation for HPC. Based on this research, rice husk (RH) will contain lots of silicon dioxide (SiO2) after burning into RHA. If use RHA to replace part of cement, it can get appropriate properties of compressive strength and durability. More important is that by replacing part of cement, it not only will reduce the emission of CO2 and save money but also reach the goal of global village protection on earth.


2020 ◽  
Vol 184 ◽  
pp. 01083
Author(s):  
Dr. Vanathi ◽  
Dr.K Radhika ◽  
Ms. G. Swetha

Permeable concrete is a special concrete which consists of cement, coarse aggregate and water. Due to rapid growth of globalization and urbanization, the construction of concrete roads increasing day by day which leads to decrease in percolation of storm water, surface runoff occurring to the decrease in ground water table. In previous concrete, single sized aggregate is used to maintain the void ratio in the concrete. The cement paste is bonded with aggregate with a void ratio of 20%. In this investigation, concrete of M20 grade with water cement ratio of 0.38 is used. The properties of concrete were increased by using Rice husk ash and Bagasse ash in changed percentages (10%, 20%, 30%) by weight of cement and with the combination of rice husk ash and bagasse ash 10% (5%RA + 5%BA), 20%(10%RA+10%BA), 30%(15%RA+15%BA) are used. The compressive strength of cubes, split tensile of cylinders are casted, tested after 7 days and 28 days. After testing, the optimum percentages of replacement of admixtures are found in the Permeable concrete. Therefore the strength and durability properties of permeable concrete with the addition of bagasse ash and rice husk ash with partial replacement of cement are compared with conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document