scholarly journals Mix Design of Grade M35 by Replacement of Cement with Rice Husk Ash in Concrete

Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the

2021 ◽  
Vol 15 (1) ◽  
pp. 339-346
Author(s):  
Winfred Mutungi ◽  
Raphael N. Mutuku ◽  
Timothy Nyomboi

Background: Creep in concrete is a long-term deformation under sustained loading. It is influenced by many factors, including constituent materials, environmental conditions, among others. Whenever there is an alteration in the convectional concrete preparation process, the creep characteristics need to be realistically assessed. In the present construction, rice husk ash has been used for partial replacement of cement in concrete production. This is because its properties of both tensile and compressive strength in concrete have been tested and found comparable with plain concrete. However, durability characteristics such as creep, which take place in the long run, have not been realistically assessed. Therefore, it is important to study the creep of rice husk ash concrete, which will further help in the development of a creep prediction model for such concrete for use by design engineers. Objectives: Rice husk ash was used as supplementary cementitious material in concrete, and the creep behavior was studied with the aim of producing a creep prediction model for this concrete. Methods: The cement was replaced with 10% of rice husk ash in concrete with a design strength of 30MPA. Reinforced concrete beams were cast and loaded for flexural creep 35 days after casting. The loading level was 25% of the beam’s strength at the time of loading. The creep observation was done for 60 days. The rice husk used was obtained locally from Mwea irrigation scheme in Kenya. The experiments were carried out in our school laboratory at Jomo Kenyatta university of Agriculture and Technology. Results: The creep strain data of rice husk ash concrete beams was obtained with the highest value of 620 micro strain for 60 days. The results were used to develop a creep prediction model for this concrete. Conclusion: A creep prediction model for rice husk ash concrete has been developed, which can be adopted by engineers for class 30 of concrete containing rice husk ash at a 10% replacement level.


2013 ◽  
Vol 773 ◽  
pp. 293-297 ◽  
Author(s):  
Lee Kuo Lin ◽  
Wei Sheng Wu ◽  
Hubert Lee

During recent years, the Taiwan government launches issues of green building , sustainable engineering , carbon reduction and etc. , to promote balance construction and environment ecology. One of the most important materials in those engineering issues is cement which is used widely in construction industry. Cement emits 0.85 tons of carbon dioxide (CO2) for each ton of cement used in average. This not only causes the waste of energy but also againsts the conception of environmental protection. This research uses the rice husk ash (RHA) which people always regards as the waste material as a pozzolanic material to replace part of cement to make high performance concrete (HPC). Then makes the value analysis and properties investigation for HPC. Based on this research, rice husk (RH) will contain lots of silicon dioxide (SiO2) after burning into RHA. If use RHA to replace part of cement, it can get appropriate properties of compressive strength and durability. More important is that by replacing part of cement, it not only will reduce the emission of CO2 and save money but also reach the goal of global village protection on earth.


Author(s):  
S. E. Ubi ◽  
P. O. Nkra ◽  
R. B. Agbor

The most outstanding problem militating the production of earth block in Nigeria, is the exorbitant prices of cement, rice ash replaced with cement, stabilized compressed earth block to carry load. The main objective of this study was to investigate the sustainability of earthen construction block with a partial replacement of cement using Rice Husk Ash (RHA). RHA is a bye-product material obtained from the combustion of rice husk which consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity using a set of sieves 3.35um - 63um, weigh balance, oven maintained at a temperature of 105°C and 110°C, six meta trays, a bucket, a soap, wire brushes, and a mechanical shaker. It is used as pozzolanic material in earth block. Testing specimen were determined and examine in structural composition by means of unconfined compressive strength hydraulically compressed for crushing the composition of mix with RHA content ranges from 10% to 50% to respectively. The result of the compressed earth block shows a significant resistance of shear strength of 30 to 90 kg/mm2, proving that stabilized earth block can satisfactorily carry load when structurally loaded and can resist tensile and compressive stresses.


2020 ◽  
Vol 184 ◽  
pp. 01083
Author(s):  
Dr. Vanathi ◽  
Dr.K Radhika ◽  
Ms. G. Swetha

Permeable concrete is a special concrete which consists of cement, coarse aggregate and water. Due to rapid growth of globalization and urbanization, the construction of concrete roads increasing day by day which leads to decrease in percolation of storm water, surface runoff occurring to the decrease in ground water table. In previous concrete, single sized aggregate is used to maintain the void ratio in the concrete. The cement paste is bonded with aggregate with a void ratio of 20%. In this investigation, concrete of M20 grade with water cement ratio of 0.38 is used. The properties of concrete were increased by using Rice husk ash and Bagasse ash in changed percentages (10%, 20%, 30%) by weight of cement and with the combination of rice husk ash and bagasse ash 10% (5%RA + 5%BA), 20%(10%RA+10%BA), 30%(15%RA+15%BA) are used. The compressive strength of cubes, split tensile of cylinders are casted, tested after 7 days and 28 days. After testing, the optimum percentages of replacement of admixtures are found in the Permeable concrete. Therefore the strength and durability properties of permeable concrete with the addition of bagasse ash and rice husk ash with partial replacement of cement are compared with conventional concrete.


Author(s):  
M.T Akinleye ◽  
Q.A Uthman ◽  
A.A Abdulwahab

This study investigated the strength properties of Rice Husk Ash (RHA) concrete with shredded Polyethylene Terephthalate (PET) bottles as coarse aggregate partial replacement. Concrete mix, 1:2:4 was designed for all specimens with w/c of 0.5. Samples were prepared and examined at deferent replacement levels of cement with RHA (5, 10 and 15%) using shredded PET bottles (5, 10 and 15%) as coarse aggregate replacement. Concrete without RHA and shredded PET bottles served as control. A total number of 90 concrete cubes and 20 flexural beams were used to examine the strength properties of produced concrete specimens at 28 days. Results revealed that both compressive and flexural strengths of RHA-concrete decreased as the amount of shredded PET bottles increased. The compressive strengths obtained were 20.65, 17.44, 16.53 and 15.87 N/mm2 while the flexural strengths were 10.49, 6.63, 6.59 and 5.72 N/mm2 for 0, 5, 10 and 15% replacement levels respectively. This class of concrete could be used to produce both plain and reinforced concrete of light weight aggregate.


Author(s):  
Nayan Kawaduji Mohankar ◽  
Shrikant Solanke

Industrial waste productions are increased these days, which is causing grief to the environment. Hence it is necessary to cut down the waste generation or reuse the waste. It is needed to utilize the waste to reduce environment damage. It is known that ashes produced from the industries can be used in construction. Ashes like fly ash can successfully replaces the cement showing good results. Researchers are finding the new ways to use ashes in production of cement. Now a days cement manufactures adulterates the cement with pozzolanic material like fly ash, rice husk ash, sugarcane bagasse ash etc. Using these product in concrete, they not only reduces the pollution but also lower the price effectively. If these fillers added in proportion it enhances the properties of concrete like workability, strength, water absorption, permeability etc. considerably. This review paper represents the properties of concrete when cement gets partially replaced by sugarcane bagasse ash, fly ash and rice husk ash. This paper primarily concentrates on the properties like durability and strength when cement concrete contain fillers in it. It also considers the non-destructive tests which are performed.


A vibrant part of the cement will bond as a cover that ties separate segments different, technology of substances this coupling has turn out to be concrete costly more high priced and the creation of add-contamination ecology with the use of CO2 is the driver essential of Earth-wide impetus temperature so that the measures adopted to normal sturdy asset or environmental waste used as set up material.RHA strengthening is bye-yield rice industry, deeply responsive pozzolana added by using copying the rice husk at controlled temperatures. Because the fee of contamination ecology and mind increasing preservation factor became made the use of rice husk.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 68
Author(s):  
Tolmatti Vamshi Krishna ◽  
M. Ashwin Kumar ◽  
Kunchala Anjaneyulu

Bagasse ash (BA), the residue obtained after the burning of sugarcane bagasse as a fuel, has pozzolanic properties with potential use as a supplementary binding material (SCM). Use of Bagasse ash (BA) as a mineral admixture needs to be established, especially in India, where sugarcane cultivation is widespread, to reduce land required for its disposal and cement consumption in construction industry. Hence, to encourage commercial use ofBA with minimum processing, an evaluation of the physical, chemical and  morphological characteristics of a locally available BA and its effect, as SCM on properties of structural concrete was taken up.This research work describes the feasibility of using the Fly Ash (FA) Rice Husk Ash (RHA) and Sugarcane Bagasse Ash(SCBA) waste in concrete production as a partial replacement of cement. This present work deals with the effect on strength and mechanical properties of concrete using Triple blending of cement concrete using FA, RHA and SCBA instead of cement. The cement has been replaced by rice husk ash, accordingly in the range with 0%, 10%, 20% and 30% by weight. Concrete mixture of M20 and M25 and M30, were produced, tested and compared in terms of compressive strengths with the Conventional concrete. These tests were carried out to evaluate the mechanical properties for the test results of7, 14, 28, 56 and 90 days for Compressive strengths and Tensile & Flexural Strengths at 28 days. The durability aspect of the samples for Acid attack, Alkaline attack and Sulphate attack was also tested. The result indicates that the FA, RHA and SCBA improve the Compressive Strength and durability of concrete.  


Sign in / Sign up

Export Citation Format

Share Document