scholarly journals Vegetation Monitoring Using UAV : a Preliminary Study

2018 ◽  
Vol 7 (4.35) ◽  
pp. 223 ◽  
Author(s):  
Soon Eng L ◽  
Rozita Ismail ◽  
Wahidah Hashim ◽  
Rajina R. Mohamed ◽  
Aslina Baharum

Remote sensing using drone or UAV (unmanned aerial vehicle) is the current trends and this technology can provide unrevealed life-altering benefits to mankind. Drones are being used in many sectors such as for military, research, agricultural and recreational means. This technology not only can reduce the time of inspection, but it is also giving many benefits such as provides real-time live video for site inspection that can help user to analyze site logistic and speeding up the overall tasks. However, vegetation monitoring using remote sensing has its own challenges in terms of processing the captured image and data. Somehow, previous research has suggested a lot of different possible algorithm that could be used for post-processing the data gathered. Nevertheless, most of the algorithm requires a specific sensor in order to get the result. The objective of this paper is to identify and verify the algorithm that is suitable to process the vegetation image. This research will use the data gathered from various area by using consumer camera and process by using Visible Atmospherically Resistant Index (VARI) indices. Finally, this research will observe the accuracy of the result analyzed using the VARI and identify the characteristic of the algorithm.

2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


Author(s):  
V.M. Dubyanskiy ◽  
N.V. Tsapko ◽  
L.I. Shaposhnikova ◽  
D.Yu. Degtyarev ◽  
N.A. Davydova ◽  
...  

New technologies based on remote sensing, has been actively developing now for the increasing the effectiveness of nature plague foci monitoring. The unmanned aerial vehicle (UAV) «GeoScan–101» was used for monitoring and for orthophoto creating. The monitoring was carried out at Caspian nature plague focus on a stationary square 4 ha. The accounting of rodents’ holes had been implemented previously. Gerbils Meriones tamariscinus is the host of plague microbe in the Caspian natural plague focus. The monitoring using UAV allows identifying 78,26 % of Meriones tamariscinus holes as well as Microtus socialis and Ellobius talpinus. The comprehensive using remote sensing from space and data from drone (a high-resolution picture in real time) for elaboration data of remote sensing allows increasing the effectiveness of nature plague foci survey, where the hosts have the holes small diameter: the gerbils' genus Meriones and the voles’ genus Microtus.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


Sign in / Sign up

Export Citation Format

Share Document