Simplified CFD based Approach for Estimation of Heat Flux over Wedge Models in High Speed Plasma Flows

2017 ◽  
Vol 67 (5) ◽  
pp. 497
Author(s):  
L. Aravindakshan Pillai ◽  
Praveen Nair

<p>Analysis of plasma flows at hypersonic velocity over blunt bodies is quite complex and challenging as it involves complex flow physics and carries several uncertainties. Simultaneous simulation of all the parameters as existing in re-entry flight puts constraints on most of the ground based experiments. Numerical simulations, on the other hand, require modelling of ionisation and real gas effects and prove to be computationally costly. This paper highlights the development of unstructured, cell centred second order accurate parallel version of in-house computational fluid dynamics (CFD) solver where high temperature equivalent properties used from Hansen’s 7 species model and establishment of a simplified procedure for estimation of heat flux over wedge models tested in Plasma Wind Tunnel facility, Vikram Sarabhai Space Centre. Numerical simulations were carried out for Plasma tunnel initially to get the flow properties inside the tunnel when operated without any model. A simplified CFD based approach is established for computing the heat flux over the bodies tested inside the tunnel and compared with the measured data. The comparison of numerical and measured values shows that the proposed methodology captures the flow physics and various parameters with acceptable levels of accuracy.</p>

2019 ◽  
Vol 304 ◽  
pp. 03013
Author(s):  
Ludovico Nista ◽  
Bayindir H. Saracoglu

The demand for discovering new commercial routes as well as the possibility to shortening civilian long-haul flights boosted the interest of civil hypersonic vehicle designs. Among all the multiple projects started by the various nations, the European community funded project STRATOFLY aims at refining the baseline LAPCAT II-MR2.4 design for further improvements. The new aircraft would enable a flight shorter that 3 hours from Brussels to Sydney, carrying 300-passengers above the already crowed atmosphere. The wide Mach range operability, up to Mach 8, demands the use of multiple engines, leading to a highly integrated propulsion system. The current study is focused on the development of new CFD platform to estimate the performance of the combined propulsion system during the supersonic to hypersonic transition. In order to control the complex flow physics, highfidelity CFD simulations remain the fundamental tools for the preliminary investigations. On the current framework, an advanced robust compressible solver has been develop d in order to handle the different flow regimes. The new tool solves Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations by employing cell-centered Finite Volume Method constructed on openFoam toolbox. Two innovative high-order discretization schemes, with different abilities, based on approximated Riemann solvers were developed for capturing the flow physics within high-speed propulsion systems. Advanced time discretization has been taken into account to increase the temporal accuracy. At the end, the whole implementation has been validated in multiple test cases, ranging from incompressible to hypersonic regimes, confirming its excellent stability, robustness and accuracy.


Author(s):  
Jie Gao ◽  
Xuezheng Liu ◽  
Weiyan Xiao ◽  
Weiliang Fu ◽  
Fusheng Meng ◽  
...  

Flows in an intermediate turbine duct (ITD) connecting high-pressure turbines (HPT) and low-pressure turbines (LPT) are highly complex, influenced by the upstream HP turbine flow structures. Non-uniformities originating from the duct with struts of different sizes also affect the LPT inflow conditions, resulting in reduced efficiency. The goal of this paper is to provide detailed understanding of the flow physics and loss mechanisms within the ITDs for highly efficient ITD designs. Steady and unsteady numerical simulations of flows through the ITDs in the presence of HP blade and LP vane were conducted. Effects of upstream HP blade on flow fields and loss characteristics within the ITDs are explored. The generation and propagation of wake and secondary flows through the whole configuration is described, including the fast Fourier transformation (FFT) analyses of the flow in the ITD. Results from the numerical simulations show complex flow patterns resulted from blade-strut-vane flow interactions in a high-endwall-angle duct, which are not obtainable from ITD-only simulations. Moreover, the ITD has a strong amplifying effect on the distorted inflow, and the inflow with the upstream wake and secondary flows introduces a high loss area along the casing at ITD exit. Detailed results are presented and discussed for the flow physics and loss mechanisms within the ITD.


2015 ◽  
Vol 797 ◽  
pp. 320-326
Author(s):  
Jacek Wernik ◽  
Krzysztof J. Wołosz

The article presents selected results of research work aimed to rationalize and optimize the design of the pneumatic pulsator due to thermal conditions. Pneumatic pulsator is a device used in industry storing bulk and loose materials. It is attached to the silo, allowing their correct operation. The air friction against the inner wall of the pulsator causes the release of heat. In order to investigate the conditions of heat transfer, thermal calculations were made and then numerical simulations using Computational Fluid Dynamics (CFD) were conducted. Various fins options were examined. The objective was to maximize the heat flux discharged from the device. Temperature distribution on the surface of the fins designated by CFD corresponds to the distribution designated analytically. The results were confirmed by industrial tests. Numerical simulations mapping the heat exchange processes in a pneumatic pulsator have not yet been carried out.


1988 ◽  
Author(s):  
K. KAILASANATH ◽  
J. GARDNER ◽  
E. ORAN ◽  
J. BORIS

2012 ◽  
Author(s):  
Dominic Piro ◽  
Kyle A. Brucker ◽  
Thomas T. O'Shea ◽  
Donald Wyatt ◽  
Douglas Dommermuth ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1600-1615 ◽  
Author(s):  
Jorge Aramburu ◽  
Raúl Antón ◽  
Alejandro Rivas ◽  
Juan C. Ramos ◽  
Bruno Sangro ◽  
...  

Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering radioactive microspheres by an intra-arterially placed catheter with the aim of lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even though it is a safe treatment, some radiation-induced complications may arise. In trying to detect or solve the possible incidences that cause nontarget irradiation, simulating the particle- hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD) tools has become a valuable approach. This paper reviews the parameters that influence the outcome of RE and that have been studied via numerical simulations. In this numerical approach, the outcome of RE is regarded as successful if particles reach the artery branches that feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip and locally alters the incorporation of the particles into the bloodstream. Therefore, in general, the local influences of these parameters should result in global differences in terms of particle distribution in the hepatic artery branches. However, it has been observed that under some (qualitatively described) appropriate conditions where particles align with blood streamlines, the local influence resulting from a variation of a given parameter vanishes and no global differences are observed. Furthermore, the increasing number of CFD studies on RE suggests that numerical simulations have become an invaluable research tool in the study of RE.


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


Sign in / Sign up

Export Citation Format

Share Document