scholarly journals Analysis of Operating Principles and Flow Field Characteristics for a Diving Ballast Tank

2020 ◽  
Vol 70 (5) ◽  
pp. 564-570
Author(s):  
K. C. Pan ◽  
I. M. Chao

Operating principle and flow field characteristics of a diving ballast tank for application in submerged vehicles were investigated in the present study. As understanding the complex changes in the interior air-water two-phase flow field of the ballast tank during the diving process is difficult, this study specifically performed a ballast tank diving experiment. Experimental and numerical simulations to analyse the diving motions of the ballast tank were conducted. Authors comprehensively evaluated the flow field changes in the ballast tank and its surroundings. The experimental and numerical results were compared in terms of the observed displacements and velocities during diving. Both the results indicated similar motion trajectories and velocities. Authors effectively observed the air-water two-phase flow field change inside the ballast tank using this numerical method. Therefore, the numerical model constructed in this study can be useful for analysing the diving motions of ballast tanks and can effectively predict the interior flow field characteristics of a ballast tank.

Author(s):  
Khaled J. Hammad

The turbulent two-phase flow arising from the normal impingement of a round free-surface water jet on a horizontal air-water interface was experimentally studied. Due to the weakly viscous nature of the flow system under consideration, external perturbations or small variations in jet inflow conditions can lead to drastically different flow field characteristics under seemingly similar test conditions. In the current study, a fully developed turbulent jet, exiting a long pipe, ensured properly characterized inflow conditions. The study considered two jet inflow conditions; one entrained air and created a bubbly two-phase flow field while the other did not. Particle image velocimetry (PIV) was used to characterize the flow field beneath the interface, with and without air entrainment, for various nozzle-to-interface separation distances. Turbulent velocity fields of the continuous-phase and dispersed-phase were simultaneously measured in the developing flow region and presented using Reynolds decomposition into mean and fluctuating components. The mean and RMS velocities of the two-phase flow field were compared with velocity measurements obtained under single-phase conditions.


2008 ◽  
Vol 53-54 ◽  
pp. 409-414 ◽  
Author(s):  
Y.Q. Wang ◽  
Ming Rang Cao ◽  
Sheng Qiang Yang ◽  
Wen Hui Li

The flow field characteristics have a significant effect on the machining stability in high-speed small hole EDM drilling. Thus, Lagrangian discrete phase model (DPM) has been developed to simulate the gap liquid-solid two-phase flow field. The numerical calculation is based on the standard k-ε turbulent model, and the SIMPLEC algorithm is used in the simulation. All the governing equations are solved by software Fluent 6.2. Through numerical simulation, the pressure distribution, the velocity distribution of the dielectric liquid, traces of debris particles, and the debris particle concentration were obtained. The flow field characteristics under different pressures and drilling depths were obtained through simulations. Finally, experiments were carried out to investigate the effects of the flush velocity at exit obtained through simulation on material removal rate (MRR).


2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2011 ◽  
Vol 130-134 ◽  
pp. 3644-3647
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Yu Hui Guan ◽  
Wei Guo Ma

This work performs an oil-water two-phase flow simulation in a downhole Venturi meter to investigate the flow field and pressure characteristics with different flow and oil-water ratios. The relation between the pressure drop and the feed flow rate in the flowmeter is investigated for its optimal design.


2013 ◽  
Vol 712-715 ◽  
pp. 1253-1258
Author(s):  
Hai Feng Xue ◽  
Xiong Chen ◽  
Yong Ping Wang ◽  
Ya Zheng

The two-dimension axisymmetric and two-phase flow in a full-size solid rocket motor with submerged nozzle under high acceleration condition has been simulated with Euler-Lagrange model. Without acceleration and under high axial acceleration on particle trajectories, the influences of different particle diameters were analyzed. The difference between gas flow field and two-phase flow field is significant. The particle accumulation zone above the inner wall of chamber and nozzle is mainly concentrated in two regions. The axial acceleration will intensify the impaction to the end of the chamber. The accretion of the particle phase diameter will increase the inertia of the particle phase, which may cause the following property worse, and the particles can easily form a highly-concentrated aggregation flow.


2005 ◽  
Vol 127 (4) ◽  
pp. 479-486
Author(s):  
Bin Liu ◽  
Mauricio Prado

For any pumping artificial lift system in the petroleum industry, the free gas significantly affects the performance of the pump and the system above the pump. A model, though not a complete two-phase flow model, has been developed for the effective prediction of separation efficiency across a wide range of production conditions. The model presented is divided into two main parts, the single-phase flow-field solution and the bubble-tracking method. The first part of the model solves the single-phase liquid flow field using the computational fluid dynamics approach. Then, a simple bubble-tracking method was applied to estimate the down-hole natural separation efficiency for two-phase flow. A comparison between the results of the model and the experimental data was conducted. It shows a very good agreement with the experimental data for lower gas void fractions (bubble flow regime).


Sign in / Sign up

Export Citation Format

Share Document