scholarly journals Models and Design Judgment: Conflicting Perspectives on Redesigning a Doctoral Readings Course

Author(s):  
Colin M. Gray ◽  
Jiyoon Jung ◽  
Carol Watson ◽  
Xiaokai Jia ◽  
Theodore W. Frick

The purpose of this project was to document the redesign of an existing doctoral reading course for an online environment. Potential methods for actualizing the proposed course structure in an online environment, including technology tools and interactions are discussed. The design process began within the framework of the Four-Component Instructional Design (4C/ID) model (van Merriënboer, 1997; van Merriënboer & Kirchner, 2007), which advocates a shift from topic-centeredness to a task-centered course organization, but quickly evolved into a flexible, iterative design process that was informed by prototyping, the judgment of the design team, and various theories of knowledge and knowing. The 4C/ID model represented our philosophical starting point, but our focus quickly shifted to a more flexible, eclectic process as we attempted to reconcile conflicting constraints on the final design. Along with the redevelopment of course objectives to meet strategic goals within the doctoral program came a focus on facilitating research thinking of the students rather than teaching isolated research tasks. The design process resulted in changes to the current residential course, which then provided an opportunity for further investigation. 

2015 ◽  
Author(s):  
◽  
A. K. M. Zahidul Islam

Architectural design is a deliberate act of creativity without any definite starting point. Critical analysis of any design process reveals its basic stages. Designers use a number of design and drafting tools as well as their media (modality) to perform these processes. In search of an effective solution, designers often tend to switch between modalities. The purpose of this study is to understand how design students rationalize their modality selection and factors causing modality shifts as well as the impact of these shifts on the design outcome. This study examined different externalization forms of design ideas; identified any deviation from initial design ideas that occurred due to modality shift; analyzed final design outcomes by comparing initial ideas and its follow-through on the basis of their visualization and representation; and finally, looked into correlations between the modality shift and the design outcome. Observation and analysis revealed that students tend to shift between modalities not necessarily for facilitating problem solving only. Individual styles, instructions, requirements, context, culture, competency, ambiguity and cognitive aspects also play a significant role. It was also evident that the amplitude of shift has a positive correlation with designers' experience and accordingly impact on the final design outcome. The result of this study would help to identify reasons and effects of modality shift in design process and thus benefit design pedagogy and practice. By developing effective design methods and processes through meaningful incorporation of traditional and technologically advanced tools, students of the digital age would benefit and enhance their design perception and decision-making.


Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2021 ◽  
Vol 1 ◽  
pp. 2409-2418
Author(s):  
Summer D. Jung ◽  
Erika Perttunen ◽  
Senni Kirjavainen ◽  
Tua Björklund ◽  
Sohyeong Kim

AbstractAs design research expands its horizon, there has been a recent rise in studies on nontraditional designers. Previous studies have noted the positive effect of diversity in generating ideas. Among different sources of influence, peers outside the design team have been noted for their positive impact on the design process, yet the research on this topic is still in its early stages. Using qualitative data from 40 small and medium-sized enterprises (SMEs) in the American and Finnish food and beverage industries, the current study examines their interactions with other SMEs, shedding light on the influence of peers on creating new design solutions. The findings suggest that peer companies can act as a frequent and impactful source of inspiration for product design ideas. The most prevalent forms of interaction were co-creating products, sharing information, and sharing ingredients. Furthermore, the interactions were voluntary, organic, and improvisational in nature, and physical proximity or previous connections often initiated the interactions. Taken together, a great number of peer influences contributed towards creative new solutions.


2021 ◽  
Vol 12 (01) ◽  
pp. 164-169
Author(s):  
Laurie Lovett Novak ◽  
Jonathan Wanderer ◽  
David A. Owens ◽  
Daniel Fabbri ◽  
Julian Z. Genkins ◽  
...  

Abstract Background The data visualization literature asserts that the details of the optimal data display must be tailored to the specific task, the background of the user, and the characteristics of the data. The general organizing principle of a concept-oriented display is known to be useful for many tasks and data types. Objectives In this project, we used general principles of data visualization and a co-design process to produce a clinical display tailored to a specific cognitive task, chosen from the anesthesia domain, but with clear generalizability to other clinical tasks. To support the work of the anesthesia-in-charge (AIC) our task was, for a given day, to depict the acuity level and complexity of each patient in the collection of those that will be operated on the following day. The AIC uses this information to optimally allocate anesthesia staff and providers across operating rooms. Methods We used a co-design process to collaborate with participants who work in the AIC role. We conducted two in-depth interviews with AICs and engaged them in subsequent input on iterative design solutions. Results Through a co-design process, we found (1) the need to carefully match the level of detail in the display to the level required by the clinical task, (2) the impedance caused by irrelevant information on the screen such as icons relevant only to other tasks, and (3) the desire for a specific but optional trajectory of increasingly detailed textual summaries. Conclusion This study reports a real-world clinical informatics development project that engaged users as co-designers. Our process led to the user-preferred design of a single binary flag to identify the subset of patients needing further investigation, and then a trajectory of increasingly detailed, text-based abstractions for each patient that can be displayed when more information is needed.


2021 ◽  
Vol 13 (8) ◽  
pp. 4492
Author(s):  
Janka Saderova ◽  
Andrea Rosova ◽  
Marian Sofranko ◽  
Peter Kacmary

The warehouse process, as one of many logistics processes, currently holds an irreplaceable position in logistics systems in companies and in the supply chain. The proper function of warehouse operations depends on, among other things, the type of the used technology and their utilization. The research in this article is focused on the design of a warehouse system. The selection of a suitable warehouse system is a current research topic as the warehouse system has an impact on warehouse capacity and utilization and on the speed of storage activities. The paper presents warehouse system design methodology that was designed applying the logistics principle-systematic (system) approach. The starting point for designing a warehouse system represents of the process of design logistics systems. The design process consists of several phases: project identification, design process paradigm selection, system analysis, synthesis, and project evaluation. This article’s contribution is the proposed methodology and design of the warehouse system for the specified conditions. The methodology was implemented for the design of a warehouse system in a cold box, which is a part of a distribution warehouse. The technology of pallet racking was chosen in the warehouse to store pallets. Pallets will be stored and removed by forklifts. For the specified conditions, the warehouse system was designed for two alternatives of racking assemblies, which are served by forklifts. Alternative 1—Standard pallet rack with wide aisles and Alternative 2—Pallet dynamic flow rack. The proposed systems were compared on the basis of selected indicators: Capacity—the number of pallet places in the system, Percentage ratio of storage area from the box area, Percentage ratio of handling aisles from the box area, Access to individual pallets by forklift, Investment costs for 1 pallet space in EUR. Based on the multicriteria evaluation, the Alternative 2 was chosen as the acceptable design of the warehouse system with storage capacity 720 pallet units. The system needs only two handling aisles. Loading and unloading processes are separate from each other, which means that there are no collisions with forklifts. The pallets with the goods are operated on the principle of FIFO (first in, first out), which will facilitate the control of the shelf life of batches or series of products. The methodology is a suitable tool for decision-making in selecting and designing a warehouse system.


Author(s):  
Jacqueline B. Barnett

The application of ergonomics is important when considering the built environment. In order to create an environment where form follows function, a detailed understanding of the tasks performed by the individuals who will live and work in the facility is required. Early involvement in the project is key to maximizing the benefit of ergonomics. At Sunnybrook and Women's College Health Sciences Centre in Toronto, Canada, this early intervention was embraced during the design process of a behavioural care unit for aggressive patients. The ergonomist was involved in three phases of design; user needs analysis, block schematics and detailed design. The user needs and characteristics were established using a combination of focus groups, interviews, direct observation, task analysis and critique of current working environments. The challenge was to present the information to the design team in a useful manner. The format chosen was a modification of Userfit (Poulson 1996) that outlined the various characteristics of the patient group and the design consequences with “what does this mean for me” statements. During the block schematics phase an iterative design process was used to ensure that the ergonomic principles and the user needs were incorporated into the design. Ergonomic input was used in determining the room sizes and layout and to ensure work processes were considered. Simple mock-ups and anthropometric data assisted in illustrating the need for design changes. Examples that highlight the areas of greatest impact of ergonomic intervention include the patient bathrooms, showers and tub room. Significant changes were made to the design to improve the safety of the work and living space of the end users. One of the greatest challenges was having an appreciation for the individual goals of the team members. Ensuring there was adequate space for equipment and staff often resulted in recommendations for increased space. This in turn would increase the cost of the project. The architect and, later in the project, the engineer had goals of bringing the project in on budget. The final design was very much a team effort and truly die result of an iterative process. The sum of the individual contributions could not match the combined efforts. It was only through the ergonomic contributions in this early design phase that the needs of the staff, patients and families could be so well represented. The success of the iterative process provides the foundation for bringing ergonomics considerations into the early design stages of future projects.


Author(s):  
Andrew P. Sabelhaus ◽  
Hao Ji ◽  
Patrick Hylton ◽  
Yakshu Madaan ◽  
ChanWoo Yang ◽  
...  

The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to create a compliant, cable-driven, 3-degree-of-freedom, underactuated tensegrity core for quadruped robots. This work presents simulations and preliminary mechanism designs of that robot. Design goals and the iterative design process for an ULTRA Spine prototype are discussed. Inverse kinematics simulations are used to develop engineering characteristics for the robot, and forward kinematics simulations are used to verify these parameters. Then, multiple novel mechanism designs are presented that address challenges for this structure, in the context of design for prototyping and assembly. These include the spine robot’s multiple-gear-ratio actuators, spine link structure, spine link assembly locks, and the multiple-spring cable compliance system.


Author(s):  
Margaret Wong ◽  
Akudasuo Ezenyilimba ◽  
Alexandra Wolff ◽  
Tyrell Anderson ◽  
Erin Chiou ◽  
...  

Urban Search and Rescue (USAR) missions often involve a need to complete tasks in hazardous environments. In such situations, human-robot teams (HRT) may be essential tools for future USAR missions. Transparency and explanation are two information exchange processes where transparency is real-time information exchange and explanation is not. For effective HRTs, certain levels of transparency and explanation must be met, but how can these modes of team communication be operationalized? During the COVID-19 pandemic, our approach to answering this question involved an iterative design process that factored in our research objectives as inputs and pilot studies with remote participants. Our final research testbed design resulted in converting an in-person task environment to a completely remote study and task environment. Changes to the study environment included: utilizing user-friendly video conferencing tools such as Zoom and a custom-built application for research administration tasks and improved modes of HRT communication that helped us avoid confounding our performance measures.


1983 ◽  
Author(s):  
George S. Hazen ◽  
Steve Killing

From the perspective of the design office, this paper examines the manner in which computers are streamlining and changing the design process for today's sailing yachts. Starting with preliminary design and progressing through the more detailed aspects of final design, the computer's varying roles in the design process are traced with examples drawn from currently implemented programs. In addition to its customary role as a bookkeeper, the computer's remarkable graphics capabilities are highlighted. The authors offer a glimpse of what programs and hardware tomorrow's yacht designer will use as frequently as his curves and battens. The paper covers such subjects as design follow-up, sailing analysis and feedback into the original design process. Since designers are not the only ones to benefit from the computer revolution, the authors have included sections on computer generated sailing aids for the yachtsman and possible CAD/CAM applications for the boatbuilder.


2021 ◽  
Author(s):  
Jeonghwan Hwang ◽  
Taeheon Lee ◽  
Honggu Lee ◽  
Seonjeong Byun

BACKGROUND Despite the unprecedented performances of deep learning algorithms in clinical domains, full reviews of algorithmic predictions by human experts remain mandatory. Under these circumstances, artificial intelligence (AI) models are primarily designed as clinical decision support systems (CDSSs). However, from the perspective of clinical practitioners, the lack of clinical interpretability and user-centered interfaces block the adoption of these AI systems in practice. OBJECTIVE The aim of this study was to develop an AI-based CDSS for assisting polysomnographic technicians in reviewing AI-predicted sleep staging results. This study proposed and evaluated a CDSS that provides clinically sound explanations for AI predictions in a user-centered fashion. METHODS User needs for the system were identified during interviews with polysomnographic technicians. User observation sessions were conducted to understand the workflow of the practitioners during sleep scoring. Iterative design process was performed to ensure easy integration of the tool into clinical workflows. Then, we evaluated the system with polysomnographic technicians. We measured the improvements in sleep staging accuracies after adopting our tool and assessed qualitatively how the participants perceived and used the tool. RESULTS The user study revealed that technicians desire explanations relevant to key electroencephalogram (EEG) patterns for sleep staging when assessing the correctness of the AI predictions. Here, technicians could evaluate whether AI models properly locate and use those patterns during prediction. Based on this, information in AI models that is closely related to sleep EEG patterns was formulated and visualized during the iterative design process. Furthermore, we developed a different visualization strategy for each pattern based on the way the technicians interpreted the EEG recordings with these patterns during their workflows. Generally, the tool evaluation results from the nine polysomnographic technicians were positive. Quantitatively, technicians achieved better classification performances after reviewing the AI-generated predictions with the proposed system; classification accuracies measured with Macro-F1 scores improved from 60.20 to 62.71. Qualitatively, participants reported that the provided information from the tool effectively supported them, and they were able to develop notable adoption strategies for the tool. CONCLUSIONS Our findings indicate that formulating clinical explanations for automated predictions using the information in the AI with a user-centered design process is an effective strategy for developing a CDSS for sleep staging.


Sign in / Sign up

Export Citation Format

Share Document