scholarly journals Rare Earth Elements: A brief overview

2022 ◽  
Vol 4 ◽  
Author(s):  
Agnieszka Drobniak ◽  
Maria Mastalerz

Recent years have witnessed increasing awareness and interest in rare earth elements (REE). These several, usually unfamiliar elements, are key components of countless products used in our daily lives. Because of their use in many modern technologies, including those important for national security, the demand for REE grows, and so does the production, need to find their new sources and improve the extraction. This article provides an overview of REEs, their availability, production, and uses, and briefly discusses the future of these valuable and critical metals.  

2020 ◽  
Vol 6 (41) ◽  
pp. eabb6570 ◽  
Author(s):  
Michael Anenburg ◽  
John A. Mavrogenes ◽  
Corinne Frigo ◽  
Frances Wall

Carbonatites and associated rocks are the main source of rare earth elements (REEs), metals essential to modern technologies. REE mineralization occurs in hydrothermal assemblages within or near carbonatites, suggesting aqueous transport of REE. We conducted experiments from 1200°C and 1.5 GPa to 200°C and 0.2 GPa using light (La) and heavy (Dy) REE, crystallizing fluorapatite intergrown with calcite through dolomite to ankerite. All experiments contained solutions with anions previously thought to mobilize REE (chloride, fluoride, and carbonate), but REEs were extensively soluble only when alkalis were present. Dysprosium was more soluble than lanthanum when alkali complexed. Addition of silica either traps REE in early crystallizing apatite or negates solubility increases by immobilizing alkalis in silicates. Anionic species such as halogens and carbonates are not sufficient for REE mobility. Additional complexing with alkalis is required for substantial REE transport in and around carbonatites as a precursor for economic grade-mineralization.


Author(s):  
Robert U. Ayres ◽  
Laura Talens Peiró

In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals ‘attractors’ and the rare accompanying metals ‘hitch-hikers’. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 320 ◽  
Author(s):  
Dominik Zawadzki ◽  
Łukasz Maciąg ◽  
Tomasz Abramowski ◽  
Kevin McCartney

The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), as well as other selected critical elements contained in 135 sediment samples of siliceous clayey silts, are presented. The vertical and spatial variabilities of elements, with particular emphasis on REE as well as metals of the highest economic interest such as Cu, Ni, and Co, are detailed. The applied methods include grain size analysis by laser diffraction, geochemistry examination using ICP-MS, XRF, AAS, and CNS spectrometry, and XRD analysis of mineral composition (Rietveld method). Additionally, statistical methods such as factor analysis (FA) and principal components analysis (PCA) were applied to the results. Finally, a series of maps was prepared by geostatistical methods (universal kriging). Grain size analysis showed poor sorting of the examined fine-grained silts. ICP-MS indicated that total REE contents varied from 200 to 577 ppm, with a mean of 285 ppm, which is generally low. The contents of critical metals such as Cu, Ni, and Co were also low to moderate, apart from some individual sampling stations where total contents were 0.15% or more. Metal composition in sediments was dominated by Cu, Ni, and Zn. A mineral composition analysis revealed the dominance of amorphous biogenic opaline silica (27–58%), which were mostly remnants of diatoms, radiolarians, and sponges associated with clay minerals (23% to 48%), mostly Fe-smectite and illite, with mixed-layered illite/smectite. The high abundance of diagenetic barite crystals found in SEM−EDX observations explains the high content of Ba (up to 2.4%). The sediments showed complex lateral and horizontal fractionation trends for REE and critical metals, caused mostly by clay components, early diagenetic processes, admixtures of allogenic detrital minerals, or scavenging by micronodules.


Fact Sheet ◽  
2014 ◽  
Author(s):  
Bradley S. Van Gosen ◽  
Philip L. Verplanck ◽  
Keith R. Long ◽  
Joseph Gambogi ◽  
Robert R. Seal

Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 562 ◽  
Author(s):  
Nils Reinhardt ◽  
Joaquín Proenza ◽  
Cristina Villanova-de-Benavent ◽  
Thomas Aiglsperger ◽  
Telm Bover-Arnal ◽  
...  

Karst bauxite deposits are currently investigated as a new resource for rare earth elements (REE) in order to avoid present and future supply shortfalls of these critical metals. The present work focuses on the geochemistry and mineralogy of the REE in karst bauxite deposits of the Catalan Coastal Range (CCR), NE-Spain. It is revealed that the studied bauxitic ores have a dominant breccia and local ooido-pisoidic and pelitomorphic texture. The bauxitic ores are mostly composed of kaolinite and hematite, as well as of lesser amounts of boehmite, diaspore, rutile and calcite. The mineralogy and major element composition indicate incomplete bauxitization of an argillaceous precursor material possibly derived from the erosion of the Mesozoic Ebro massif paleo-high. The studied bauxites are characterized by ∑REE (including Sc, Y) between 286 and 820 ppm (av. 483 ppm) and light REE to heavy REE (LREE/HREE) ratios up to 10.6. REE are mainly concentrated in phosphate minerals, identified as monazite-(Ce) and xenotime-(Y) of detrital origin and unidentified REE-phosphates of a possible authigenic origin. REE remobilization presumably took place under acidic conditions, whereas REE entrapment in the form of precipitation of authigenic rare earth minerals from percolating solutions was related to neutral to slightly alkaline conditions. During the bauxitization process no significant REE fractionation took place and the REE distribution pattern of the bauxitic ores was governed by the REE budget of the precursor material. Finally, adsorption as a main REE scavenging mechanism in the studied CCR bauxite deposits should not be considered, since the presented data did not reveal significant REE contents in Fe-and Mn-oxyhydroxides and clay minerals.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 248 ◽  
Author(s):  
Yunbo Yun ◽  
Srecko Stopic ◽  
Bernd Friedrich

Due to their unique characteristics, Lanthanides series (15 elements) together with scandium and yttrium are used as critical metals in numerous applications such as energy sources, catalysts, hybrid cars, medical technology, and military industry. The significance of rare earth elements has been continuously increasing because the global demand for producing high-tech devices is continuously rising. The recovery of rare earth oxide from concentrate based on eudialyte and steenstrupine was performed using a hydrometallurgical and pyrometallurgical method. Eudialyte and steenstrupine are a complex Na-Ca-zirconosilicate mineral containing rare earth elements (REEs), Zr, Hf and Nb, thus serving as a potential source of Zr. Because of the presence of silica in eudialyte, the main challenge in its processing is avoiding silica gel formation, which is an unfilterable solid residue. The influence of leaching temperature, time and solid–liquid ratio on leaching efficiency was studied in laboratory conditions. A new research strategy was developed in order to recover rare earth elements using hydrochloric acid, avoiding silica gel formation.


2021 ◽  
Vol 278 ◽  
pp. 01016
Author(s):  
Justyna Woźniak ◽  
Marcel Gurdziel

Rare Earth Elements (REEs), due to their unique properties, are nowadays a desirable raw material, especially in the development of modern technologies. This paper describes a 4-step research methodology for the task of identifying the potential for REE recovery in landfilled fly ash. A literature analysis was performed on their significance, occurrence in both primary and secondary deposits. Opportunities for REE recovery from coal fly ash in conventional power plants were identified and selected technologies were described. Poland, as a country whose energy sector is to a large extent based on coal, has a potential in this respect. Taking into account studies of the Polish Central Statistical Office (GUS) and forecasts of the Polish energy policy, the article determines the approximate value of REE in the waste stream from coal-fired power plants burning hard coal.


Sign in / Sign up

Export Citation Format

Share Document