scholarly journals Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 248 ◽  
Author(s):  
Yunbo Yun ◽  
Srecko Stopic ◽  
Bernd Friedrich

Due to their unique characteristics, Lanthanides series (15 elements) together with scandium and yttrium are used as critical metals in numerous applications such as energy sources, catalysts, hybrid cars, medical technology, and military industry. The significance of rare earth elements has been continuously increasing because the global demand for producing high-tech devices is continuously rising. The recovery of rare earth oxide from concentrate based on eudialyte and steenstrupine was performed using a hydrometallurgical and pyrometallurgical method. Eudialyte and steenstrupine are a complex Na-Ca-zirconosilicate mineral containing rare earth elements (REEs), Zr, Hf and Nb, thus serving as a potential source of Zr. Because of the presence of silica in eudialyte, the main challenge in its processing is avoiding silica gel formation, which is an unfilterable solid residue. The influence of leaching temperature, time and solid–liquid ratio on leaching efficiency was studied in laboratory conditions. A new research strategy was developed in order to recover rare earth elements using hydrochloric acid, avoiding silica gel formation.

2017 ◽  
Vol 108 ◽  
pp. 115-122 ◽  
Author(s):  
P. Davris ◽  
S. Stopic ◽  
E. Balomenos ◽  
D. Panias ◽  
I. Paspaliaris ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Kenneth N. Han

Rare earth elements (REEs) have become an important group of metals used in many high-tech industries, including high-strength magnets, plasma TVs, various military applications, and clean and efficient green energy industries [...]


2021 ◽  
Vol 315 ◽  
pp. 02004
Author(s):  
Tatiana Cherkasova ◽  
Anastasia Tikhomirova ◽  
Elizaveta Cherkasova ◽  
Andrey Golovachev

In the context of restrictions due to the sanctions imposed, a key factor in the country's development is the development of new Russian high-tech materials and their production technologies. The study of ash and slag waste from the Kemerovo State District Power Plant was carried out in this work using the methods of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). It has been established that matrix elements make up the predominant share of ash and slag waste. Rare and rare earth elements in terms of their content are classified as trace elements, however, some of them either have commercial values, or are close to it.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Sang-Joon Pak ◽  
Inah Seo ◽  
Kyeong-Yong Lee ◽  
Kiseong Hyeong

The critical metal contents of four types of seabed mineral resources, including a deep-sea sediment deposit, are evaluated as potential rare earth element (REE) resources. The deep-sea resources have relatively low total rare earth oxide (TREO) contents, a narrow range of TREO grades (0.049–0.185%), and show characteristics that are consistent with those of land-based ion adsorption REE deposits. The relative REO distributions of the deep-seabed resources are also consistent with those of ion adsorption REE deposits on land. REEs that are not part of a crystal lattice of host minerals within deep-sea mineral deposits are favorable for mining, as there is no requirement for crushing and/or pulverizing during ore processing. Furthermore, low concentrations of Th and U reduce the risk of adverse environmental impacts. Despite the low TREO grades of the deep-seabed mineral deposits, a significant TREO yield from polymetallic nodules and REE-bearing deep-sea sediments from the Korean tenements has been estimated (1 Mt and 8 Mt, respectively). Compared with land-based REE deposits, deep-sea mineral deposits can be considered as low-grade mineral deposits with a large tonnage. The REEs and critical metals from deep-sea mineral deposits are important by-products and co-products of the main commodities (e.g., Co and Ni), and may increase the economic feasibility of their extraction.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4010-4015 ◽  
Author(s):  
XIAOJUAN JI ◽  
QIULI WEI ◽  
CHUNGEN ZHOU ◽  
SHENGKAI GONG ◽  
HUIBIN XU

Decreasing thermal diffusivity of YSZ can increase the thermal barrier effect. Thermal diffusivity is in direct proportion to lattice oscillation amplitude and frequency. The addition of rare earth oxide into YSZ may induce the lattice distortion, which will result in the change of lattice oscillation frequency. In the present work, combined with the experiment, a theoretical study was proposed to investigate the effect of the rare earth elements on the thermal barrier effect of YSZ using first-principal calculations implemented CASTEP program. It has been found that the addition of the rear earth element can make larger lattice distortion and favorable to reduce the thermal conductivity. The calculation results are in agreement with our experimental results.


Author(s):  
Robert U. Ayres ◽  
Laura Talens Peiró

In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals ‘attractors’ and the rare accompanying metals ‘hitch-hikers’. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.


2018 ◽  
Vol 149 ◽  
pp. 01092
Author(s):  
B. Belqat ◽  
S. Belcadi

Many kinds of rare earth elements (REE) such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.


2015 ◽  
Vol 152 ◽  
pp. 178-182 ◽  
Author(s):  
Takeshi Ogata ◽  
Hirokazu Narita ◽  
Mikiya Tanaka

Sign in / Sign up

Export Citation Format

Share Document