A Grey Wolf Optimization Improved Deep Belief Network for Employee Attrition Prediction

Author(s):  
Usha P M ◽  
Balaji N V
2019 ◽  
Vol 9 (18) ◽  
pp. 3765 ◽  
Author(s):  
Yin Xing ◽  
Jianping Yue ◽  
Chuang Chen ◽  
Yunfei Xiang ◽  
Yang Chen ◽  
...  

Accurate PM2.5 concentration prediction is crucial for protecting public health and improving air quality. As a popular deep learning model, deep belief network (DBN) for PM2.5 concentration prediction has received increasing attention due to its effectiveness. However, the DBN structure parameters that have a significant impact on prediction accuracy and computation time are hard to be determined. To address this issue, a modified grey wolf optimization (MGWO) algorithm is proposed to optimize the DBN structure parameters containing number of hidden nodes, learning rate, and momentum coefficient. The methodology modifies the basic grey wolf optimization (GWO) algorithm using the nonlinear convergence and position update strategies, and then utilizes the training error of the DBN to calculate the fitness function of the MGWO algorithm. Through the multiple iterations, the optimal structure parameters are obtained, and a suitable predictor is finally generated. The proposed prediction model is validated on a real application case. Compared with the other prediction models, experimental results show that the proposed model has a simpler structure but higher prediction accuracy.


2020 ◽  
Author(s):  
Kin Meng Wong ◽  
Shirley Siu

Protein-ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein in current structure-based drug design. In this paper, we evaluate the performance of grey wolf optimization (GWO) in protein-ligand docking. Two versions of the GWO docking program – the original GWO and the modified one with random walk – were implemented based on AutoDock Vina. Our rigid docking experiments show that the GWO programs have enhanced exploration capability leading to significant speedup in the search while maintaining comparable binding pose prediction accuracy to AutoDock Vina. For flexible receptor docking, the GWO methods are competitive in pose ranking but lower in success rates than AutoDockFR. Successful redocking of all the flexible cases to their holo structures reveals that inaccurate scoring function and lack of proper treatment of backbone are the major causes of docking failures.


2016 ◽  
Vol 4 (3) ◽  
pp. 39
Author(s):  
Ramanaiah M. LAXMIDEVI ◽  
REDDY M. DAMODAR ◽  
◽  

2019 ◽  
Vol 28 (5) ◽  
pp. 925-932
Author(s):  
Hua WEI ◽  
Chun SHAN ◽  
Changzhen HU ◽  
Yu ZHANG ◽  
Xiao YU

Sign in / Sign up

Export Citation Format

Share Document