scholarly journals Optimization of Compressive Strength of Concrete Containing Rubber Chips as Coarse Aggregate Based on Scheffe’s Model

2020 ◽  
Vol 7 (7) ◽  
pp. 93-110
Author(s):  
Iboroma Zab Akobo ◽  
Scott Bernard Akpila ◽  
Bamidele Okedeyi
Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Hartono Hartono

Hartono, in this paper explain that to obtain the allowed characteristic compressive strength of concrete from a concrete construction is quite difficult , because it is influenced by the mix of materials used for the manufacture of the construction, in which the require material of the concrete mix had to be in accordance with Reinforced Concrete Indonesia Rule Year 1991. The main factor of mix material that affect permitted the compressive strength of concrete is aggregate characteristics, namely the coarse aggregate or crushed stone. Therefore this study is intended to determine the compressive strength of concrete with the characteristics of coarse aggregate material of crushed stone that comes from limestone. This research use Gresik PC mixture concrete, muntilan sand, and kricak of limestone. To determine concrete compressive characteristics strength of concrete, concrete specimen as many as 20 pieces, with mixed-use PC weight ratio of 1 : 2 Ps : 3, cube molded kricak with the size of 15 cm X 15 cm X 15 cm was made. From these results, it can be obtained that concrete compressive characteristic strength σ 1 bk = 215.41 kg / cm2. Keyword: Concrete construction


2019 ◽  
Vol 258 ◽  
pp. 04011
Author(s):  
Atur P. N. Siregar ◽  
Emma L. Pasaribu ◽  
I Wayan Suarnita

Coarse aggregate is the dominant constituent in concrete. Aggregate hardness is a variable needed to investigate in determining its effect on the critical stress intensity factors (KIC), dissipated fracture energy (Gf) and compressive strength (fc’) of the concrete. The hardness of coarse aggregate based on Los Angeles abrasion values of 16.7%., 22.6%, and 23.1% was used incorporated with Portland Composite Cement (PCC), and superplasticizer to create specimens. Cubes of 150x150x150 mm were employed to determine the fc’, and four beam sizes: 50x100x350 mm, 50x150x500 mm, 50x300x950 mm and 50x450x1250 mm were engaged to determine KIC and Gf. The fc’ and Gf of specimens manufactured by three different hardness of coarse aggregates were 45, 43, 40 MPa and 89.4, 54.0, 56.3 N/m respectively. KIC of specimens was 138.9, 119.4 and 114.1 MPa.mm1/2 for beam size of 50x100x350 mm; 148.2, 115.8 and 108.8 MPa.mm1/2 for beam size of 50x150x500 mm; 230.9, 183.1 and 157.9 MPa.mm1/2 for beam size of 50x300x950 mm; and 293.2, 248.1 and 244.3 MPa.mm1/2 for beam size of 50x450x1250 mm. Experimental results showed that decreasing hardness of coarse aggregate was found to have significant effect on the fracture toughness rather than on the compressive strength of concrete.


2021 ◽  
Vol 328 ◽  
pp. 10006
Author(s):  
Daud Andang Pasalli ◽  
Dina Limbong Pamuttu ◽  
Rahmat Fajar Septiono ◽  
Chitra Utary ◽  
Hairulla Hairulla

The use of lightweight concrete materials in Indonesia, especially in the Merauke Regency area can be an alternative amid the rapid development of the housing sector. In this experimental study, the author took the initiative to replace coarse aggregate with wood charcoal as light coarse aggregate. The purpose of this study was to determine the value of compressive strength and to determine whether the wood charcoal material met the standard of lightweight concrete coarse aggregate. Planning the proportion of lightweight concrete mixture in this study using a volume ratio between cement, sand and wood charcoal of 1: 2, 1: 2: 2.5 and 1: 2: 5 with variations of test days at 3, 7, 14, 21 and 28 day. From the results of the compressive strength test of lightweight concrete, the use of wood charcoal aggregate as coarse aggregate in concrete causes the value of the compressive strength of concrete to decrease.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Aggregates used in concrete are fast depleting natural resource and the quarrying of which is causing environmental issues. Hence, the use of aggregate from alternate sources such as from waste discarded glass, from foundry sand discarded after metal casting process and sea shells is investigated. Compressive strength of concrete with glass powder, foundry sand and sea shell is studied individually. Concrete is cast with glass powder and foundry sand as 5%, 10%, 15% and 20% replacement of fine aggregate and with sea shell as 5%, 10%, 15% and 20% replacement of coarse aggregate individually. It is observed that compressive strength of concrete decreases with glass powder, foundry sand, and sea shell. Fine aggregate replaced by 10% glass powder, 10%, foundry sand and coarse aggregate replaced by 10% sea shell have the least decrease in strength when compared to control concrete mix.


Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


Sign in / Sign up

Export Citation Format

Share Document