THE EFFECT OF AGE ON THE COMPRESSIVE STRENGTH OF CONCRETE BY USING ULTRASONIC PULSE VELOCITY

Author(s):  
Qadri Ahmed Yousif ◽  
Idris Bedirhanoglu ◽  
Mehmet Enver Aydin ◽  
Ziwar Zebari

In this study, the effect of age on the strength development of concrete was investigated. For this purpose, specimens casted with ready mix concrete for different grades of concrete were obtained from ready-mix concrete firms available in Diyarbakir city which is the one of the biggest cities of Turkey. A few sets with different grade of concrete cube specimens were used in the experimental work. Each set included over 40 specimens. For measuring concrete strength development, two different tests were used: ultrasonic pulse velocity testing (UPV) and uniaxial compressive strength testing. After UPV and compressive strength tests, strength development for early ages was evaluated and defined. The aim of this work is to define the path of strength development of certain grades of concrete used in the east regions of Turkey. Another aim of the work is to be able to determine concrete strength through non-destructive UPV tests. As a result, it was seen that concrete strength development for early ages is not linearly proportional to age. Further, UPV measurements can give information on the progress of concrete strength.

2021 ◽  
Vol 1021 ◽  
pp. 45-54
Author(s):  
Mohammed Al-Helfi ◽  
Ali Allami

Non-Destructive methods have greater advantage in assessing the homogeneity, compressive strength, corrosion of rebars in concrete etc. of damaged structures. The aim of the present study is to assess the existing building, which is 41 year old, in the Technical Institute of Amara affiliated with the Southern Technical University, Maysan, Iraq. The research focus on the assessment of the concrete strength and the inspection of the damages in the building. Besides the visual inspection, the ultrasonic pulse velocity and schmidt hammer were used as a non-destructive test method for testing of 30 columns and 15 beams for a building consisting of three floors. The concrete compressive strength was estimated by using SonReb method. The equations proposed by Gasparik, 1984, Di Leo & Pascale, 1994, Arioglu et al., 1996, Cristofaro et al. (EXP), 2020 and Cristofaro et al (PW), 2020 were used for assessment the compressive strength of oncrete. The non-destructive test results indicated that the average strength of the structural elements greater than the design compressive strength of the tested elements. Therefore, the building can be considered structurally is safe.


2020 ◽  
Vol 10 (18) ◽  
pp. 6261
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee ◽  
Hyeonggil Choi

This study proposes model formulae for predicting the strength of concrete by analyzing the relationships between the results of nondestructive testing (NDT) methods and the compressive strength of concrete specimens at the hardened stage. Further, NDT of concrete molds and mock-up specimens was conducted using NDT methods (rebound hammer, ultrasonic pulse velocity). The water/cement (W/C) ratios were set to 0.48, 0.41, and 0.33 to achieve concrete strengths within the compressive strength range of 24–60 MPa. The evaluation parameters included the fresh concrete properties, compressive strength (mold and core), temperature history, maturity, rebound value, and ultrasonic pulse velocity. Evaluation results indicated that the reliability of existing models, based on the rebound and ultrasonic pulse velocity, is significantly low on high-strength concrete of 40 MPa or higher, and cannot satisfy the ±20% error range. Consequently, this study proposes a regression equation of the concrete strength based on the experimental rebound and ultrasonic pulse velocity values in a 24–60 MPa range, which offers satisfactory reliability.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2020 ◽  
Vol 13 (2) ◽  
pp. 222-247 ◽  
Author(s):  
J. P. GODINHO ◽  
T. F. DE SOUZA JÚNIOR ◽  
M. H. F. MEDEIROS ◽  
M. S. A SILVA

Abstract The hydration process of Portland cement triggers reactions of stabilization of minerals from the contact of the clinker with water, which is the Hydrated Calcium Silicate (C-S-H), the Etringite (3CaO.Al2O3.3CaSO4.32H2O) and the Portlandite (Ca(OH)2). In order to understand the effects of the evolution of hydration in cement, it is possible to apply non-destructive tests. In this context, the objective of this work is to evaluate the influence of the type of cement, the curing age, of the format and humidity of the test specimens of concrete in the ultrasonic pulse velocity (UPV). In order to do that, 36 cylindrical test specimens (10 x 20 cm) and 9 cubic ones with 25 cm of edges, with mix proportion of 1:2,7:3,2 (cement/sand/gravel), water/cement ratio of 0.58 and three types of Portland cement (CP II-Z-32, CP IV-32 RS and CP V-ARI) were molded. With data obtained it was possible to correlate the increase of concrete strength along time (at ages of 7, 14, 28, 70 and 91 days) with the increase of the ultrasonic pulse velocity. Besides, it was possible to prove the direct influence of the concrete moisture and of the degree of hydration in the UPV. The shape of the test specimen generally had no influence on the results, except in the case of cement CP V ARI.


Author(s):  
Ahmed Lasisi ◽  
Obanishola Sadiq ◽  
Ibrahim Balogun

This work investigates the use of Non-destructive tests as a tool for monitoring the structural performance of concrete structures. The investigation encompassed four phases; the first of which involved the use of destructive and non-destructive mechanisms to assess concrete strength on cube specimens. The second phase research focused on site assessment for a twin engineering theatre located at the Faculty of Engineering, University of Lagos using rebound hammer and ultrasonic pulse velocity tester. The third phase was the use of linear regression analysis model with MATLAB to establish a relationship between calibrated strength as well as ultrasonic pulse velocities with their corresponding compressive strength values on cubes and values obtained from existing structures. Results show that the root-mean squared-R2 values for rebound hammer ranged between 0.275 and 0.742 while ultrasonic pulse velocity R2 values were in the range of 0.649 and 0.952 for air curing and water curing systems respectively. It initially appeared that the Ultrasonic pulse velocity was more suitable for predicting concrete strength than rebound hammer but further investigations showed that the latter was adequate for early age concrete while the former was more suited for aging concrete. Hence, a combined use is recommended in this work.


This study focuses on assessing the durability property of engineered cementitious composites using Ultrasonic pulse velocity method (direct and semi direct) to compute the compressive strength. Even the effect of mineral admixture on the mortar properties for different curing regimes shall be determined using this method. Mortar specimens containing microsilica in different percentages ranging from 5% to 25%, replacing portland cement by weight and adding polypropylene fibres ranging from 0.5% to 2% are chosen for evaluation. 20% of microsilica and 2% of polypropylene fibres induced to increase the range of UPV from 3463 m/s to 3505 m/s for 7 and 28 day curing regimes and also the compressive strength significantly improved for the above constituent. However there was a marginal decrease in the compressive strength and UPV outcomes when cement is replaced by microsilica greater than 20%. A relationship had been framed between ultrasound pulse velocity and compressive strength.


Sign in / Sign up

Export Citation Format

Share Document