Study on Thermal, Thermo-Mechanical, and Flexural Properties of Jute Fiber Surface Modification and Its Reinforced Composite

2021 ◽  
Vol 8 (5) ◽  
pp. 11-17
Author(s):  
Syed Rashedul Islam ◽  
Abeer Alassod ◽  
Mohammed Kayes Patoary ◽  
Tayyab Naveed ◽  
Md Arshad Ali ◽  
...  

In recent years, reinforced composites from biodegradable and natural fibers have a worldwide scope for advanced applications. However, the core limitation of natural fiber reinforced composites are poor consistency among supporting fibers and the matrix. Therefore, optimal structural performance of fibers and matrix is desirable. In this study, chemical treatments (i.e., alkali pretreatment, acid pretreatment, and scouring) were applied to jute fibers for improvement of composite properties. Thermal, thermo-mechanical, and flexural properties, and surface morphology, of untreated and treated jute fibers were studied on the treated fibers. Jute fiber/epoxy composite properties were analyzed by thermogravimetric analysis (TGA), flexural strength and modulus, and dynamic mechanical analysis (DMA). The chemical treatments had a significant impact on the properties of jute fiber composites.

Author(s):  
Sudeepan Jayapalan

The development of hybrid-fiber-reinforced composites has increased in recent decades because of its abundance, low cost, low weight, high strength, stiffness, and bio-degradability, thereby increasing its engineering applications. However, the major drawbacks of natural fibers in composites are their high moisture absorption and poor compatibility between fiber and matrix. Hence, chemical treatments are primarily considered to modify the fiber surfaces with the objective to improve interfacial bonding between fiber and matrix. This chapter addresses an overview of chemical treatments and their effects on natural fibers-based hybrid composites are reviewed. The chemical treatments include alkali, silane, maleated, and others, focused mainly on hybrid natural fiber composites. The significance of chemical treatment of natural fibers aimed to improve adhesion between fiber surface and matrix along with reduction in water absorption property to improve physical and mechanical properties as compared with untreated fibers for use in components of engineering applications is explored.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1226 ◽  
Author(s):  
Hua Wang ◽  
Hafeezullah Memon ◽  
Elwathig A. M. Hassan ◽  
Md. Sohag Miah ◽  
Md. Arshad Ali

Recently, the demand for reinforced plastics from natural, sustainable, biodegradable, and environmentally friendly fibers has been rising worldwide. However, the main shortcoming of natural fibers reinforced plastics is the poor compatibility between reinforcing fibers and the matrix. Hence, it is necessary to form a strong attachment of the fibers to the matrix to obtain the optimum performance. In this work, chemical treatments (acid pretreatment, alkali pretreatment, and scouring) were employed on jute fibers to modify them. The mechanical properties, surface morphology, and Fourier transform infrared spectra of treated and untreated jute fibers were analyzed to understand the influence of chemical modifications on the fiber. Then, jute fiber/epoxy composites with a unidirectional jute fiber organization were prepared. Basic properties of the composites such as the void fraction, tensile strength, initial modulus, and elongation at break were studied. The better interfacial adhesion of treated fibers was shown by scanning electron microscope (SEM) images of fractured coupons. Hence, the chemical treatment of jute fiber has a significant impact on the formation of voids in the composites as well as the mechanical properties of jute fiber composites.


2021 ◽  
Vol 1019 ◽  
pp. 32-43
Author(s):  
Prashant B. Shelar ◽  
U. Narendra Kumar

Composites have been used from very long time for solving technological problems withuse of Natural Fibers due to their unique, superior properties and light weight. Natural Fibers are nowa common material used and has created an impact in terms of product performance and their lightweight. Natural Fibers have created an enthusiasm and use of them has been increased to take overthe place of synthetic fibers in different fields. Jute fiber is assuring reinforcement in composite. Juteoneof the natural Fiber, is most promising and is readily available, degradable and possesses goodmechanical properties. This review is to provide a focus on Jute Fiber and its use different sectors suchas construction sector, automobile sector, textile sector, etc. In addition to this, it also gives basic ideaof Natural Fibers and their Reinforced Composite. This review provides an overview of importance ofthe factors to be considered when designing the composites which affects the mechanical properties.


Author(s):  
Engr. Ojukwu Martins chubuike ◽  
Chukwunyelu Christian Ebele ◽  
Engr. Ilo Fidelis Ifeanyi ◽  
Ekwueme Solomon Okwuchukwu ◽  
Orizu Eziafa Festus

2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2571
Author(s):  
Sweety Shahinur ◽  
Mahbub Hasan ◽  
Qumrul Ahsan ◽  
Nayer Sultana ◽  
Zakaria Ahmed ◽  
...  

Natural renewable materials can play a big role in reducing the consumption of synthetic materials for environmental sustainability. Natural fiber-reinforced composites have attracted significant research and commercial importance due to their versatile characteristics and multi-dimensional applications. As the natural materials are easily rotten, flammable, and moisture absorbent, they require additional chemical modification for use in sustainable product development. In the present research, jute fibers were treated with rot-, fire-, and water-retardant chemicals and their corresponding polymer composites were fabricated using a compression molding technique. To identify the effects of the chemical treatments on the jute fiber and their polymeric composites, a Fourier transformed infrared radiation (FTIR) study was conducted and the results were analyzed. The presence of various chemicals in the post-treated fibers and the associated composites were identified through the FTIR analysis. The varying weight percentage of the chemicals used for treating the fibers affected the physio-mechanical properties of the fiber as well as their composites. From the FTIR analysis, it was concluded that crystallinity increased with the chemical concentration of the treatment which could be contributed to the improvement in their mechanical performance. This study provides valuable information for both academia and industry on the effect of various chemical treatments of the jute fiber for improved product development.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Author(s):  
Vijay Kumar Mahakur ◽  
Sumit Bhowmik ◽  
Promod Kumar Patowari

Nowadays, the utilization of natural fiber reinforced composite has increased frequently. These natural fibers have significant features like low cost, renewable, and, more importantly, biodegradable in nature, making them to be utilized for various industrial sectors. However, the massive demand for natural fiber reinforced composites (NFRC), forces them to be machined and operated, which is required for countless areas in multiple industries like automotive, marine, aerospace and constructions. But before obtaining the final shape of any specimen, this specimen should come across numerous machining processes to get the desired shape and structure. Therefore, the present review paper focused on the various aspects during conventional and unconventional machining of the NFRC. It covers the work by exploring the influence of all input variables on the outcome produced after machining the NFRC. Various methodologies and tools are also discussed in this article for reducing the machining defects. The machining of the NFRC is found as a challenging task due to insufficient interlocking between the matrix and fibers, and minimum knowledge in machining characteristics and appropriate input parameters. Thus, this review is trying to assist the readers to grasp a basic understanding and information during the machining of the NFRC in every aspect.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


2020 ◽  
Vol 54 (24) ◽  
pp. 3655-3671 ◽  
Author(s):  
KR Sumesh ◽  
K Kanthavel ◽  
V Kavimani

In the current scenario, the applications of natural fibers are increasing enormously due to their biodegradability, low-density and better mechanical properties. This research explains the machining nature of pineapple (P) and flax (F) fibers by the incorporation of cellulose micro filler (CMF). These epoxy-based composites were manufactured using compression moulding. In the machining process using abrasive water jet machining (AWJM), lower kerf angle of 1.31° and surface roughness of 5.1 µm were observed in 30% PF/2% cellulose micro filler hybrid epoxy combination. Agglomeration at higher filler incorporation causes decrease in machinability of hybrid 30% PF. Pineapple and flax hybrid fibers with 30 and 35 wt % showed better machinability at 2 and 3% cellulose micro filler addition. Scanning electron microscopy analysis after machining process showed reduction in flush off and pullouts of fiber by improved compaction with the epoxy matrix due to filler addition.


Sign in / Sign up

Export Citation Format

Share Document