scholarly journals Prediction of Electromagnetic Fields around High Voltage Transmission Lines

2017 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
G A Kulkarni ◽  
W Z Gandhare

The electric and magnetic fields are present around the High Voltage Transmisssion Lines (HVTL) and reported to affect health of the workers working on these hotlines. The key parameter reportedly responsible for detrimental health effects, are internal induced fields in body. Induction of internal fields in different organs is heavily dependent on the external fields. Prediction of hazardous levels of external fields before measurement or in situations difficult for direct measurement will lead to identify the restrictive situations and working conditions for hotline workers. This work propose a method to model electric and magnetic field for different climbing routes using hybrid technique, formed by combining support vector machine (SVM) and neural network (NN) and also electric field and magnetic field values are predicted using NN for increase in tower height. The result shows the performance of proposed method for prediction of electric field and magnetic field for increase in tower height.

2020 ◽  
Vol 10 ◽  
pp. 48 ◽  
Author(s):  
Fiona Simpson ◽  
Karsten Bahr

Geomagnetic storms generate heightened magnetovariational activity, which induces electric fields that drive hazardous currents known as geomagnetically induced currents (GICs) through man-made technological conductors including power transmission lines, railway networks and gas pipelines. We multiply magnetotelluric (MT) impedances from 23 sites in Scotland and northern England with measured geomagnetic field spectra from the Halloween 2003 and September 2017 storms to estimate maximum peak-to-peak, electric field magnitudes and directions for these storms, which we present as hazard maps. By sampling these electric fields in the direction of the longest (>50 km), high-voltage (275 and 400 kV) Scottish power transmission lines and integrating along their lengths, we estimate their associated transmission-line voltages. Lateral electrical conductivity variations in the Earth generate horizontal magnetic field gradients. We investigate the effect of these gradients on electric field estimates obtained using remote magnetic fields by applying a correction to the impedance tensor derived from the magnetic perturbation tensor between the local MT site and the remote magnetic field site. For the September 2017 storm, we also compare our estimated electric fields with a unique dataset comprising measured storm-time electric fields from 7 MT sites. We find that peak-to-peak, electric field magnitudes may have reached 13 V/km during the Halloween storm in some areas of the Scottish Highlands, with line-averaged electric fields >5 V/km sustained along a number of long-distance, high-voltage power transmission lines; line-averaged electric fields for the September 2017 storm are 1 V/km or less. Our surface electric fields show significant site-to-site variability that arises due to Earth’s internal 3D electrical conductivity structure, as characterised by the MT impedance tensors.


2012 ◽  
Vol 507 ◽  
pp. 106-111
Author(s):  
Xiao Yun Zhuang ◽  
Yong Ming Li ◽  
Jun Ma

In the paper the calculation of electric field and magnetic field considering the influence caused by the sag is investigated. The method to analyze the influence caused by the transmission lines sag is presented firstly. A 110 four-circuit transmission lines in Chongqing was taken as an example, the electric field and magnetic field in 2D space and 3D space were calculated respective, and comparison was conducted. Result indicate that the electric and magnetic fields obtained in 2D space has an error of 11.2% for electric field, and 7.1% for magnetic field.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Author(s):  
N. B. Rubtsova ◽  
A. Y. Tokarskiy

The main problems of overhead and cable transmission lines with voltage >=110 kV electric and magnetic fields general public protection are presented. It is shown that it is necessary to develop regulatory requirements for these lines’ sanitary protection zones organization, taking into account the magnetic field component, because its possible health risk factor, up to carcinogenic.


2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


Sign in / Sign up

Export Citation Format

Share Document