scholarly journals High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series

Author(s):  
Haya Alaskar
Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.


2020 ◽  
Vol 12 (6) ◽  
pp. 21-32
Author(s):  
Muhammad Zulqarnain ◽  
◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Yana Mazwin Mohmad Hassim ◽  
...  

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.


2021 ◽  
Vol 14 (4) ◽  
pp. 702-713
Author(s):  
N. Prabakaran ◽  
Rajasekaran Palaniappan ◽  
R. Kannadasan ◽  
Satya Vinay Dudi ◽  
V. Sasidhar

PurposeWe propose a Machine Learning (ML) approach that will be trained from the available financial data and is able to gain the trends over the data and then uses the acquired knowledge for a more accurate forecasting of financial series. This work will provide a more precise results when weighed up to aged financial series forecasting algorithms. The LSTM Classic will be used to forecast the momentum of the Financial Series Index and also applied to its commodities. The network will be trained and evaluated for accuracy with various sizes of data sets, i.e. weekly historical data of MCX, GOLD, COPPER and the results will be calculated.Design/methodology/approachDesirable LSTM model for script price forecasting from the perspective of minimizing MSE. The approach which we have followed is shown below. (1) Acquire the Dataset. (2) Define your training and testing columns in the dataset. (3) Transform the input value using scalar. (4) Define the custom loss function. (5) Build and Compile the model. (6) Visualise the improvements in results.FindingsFinancial series is one of the very aged techniques where a commerce person would commerce financial scripts, make business and earn some wealth from these companies that vend a part of their business on trading manifesto. Forecasting financial script prices is complex tasks that consider extensive human–computer interaction. Due to the correlated nature of financial series prices, conventional batch processing methods like an artificial neural network, convolutional neural network, cannot be utilised efficiently for financial market analysis. We propose an online learning algorithm that utilises an upgraded of recurrent neural networks called long short-term memory Classic (LSTM). The LSTM Classic is quite different from normal LSTM as it has customised loss function in it. This LSTM Classic avoids long-term dependence on its metrics issues because of its unique internal storage unit structure, and it helps forecast financial time series. Financial Series Index is the combination of various commodities (time series). This makes Financial Index more reliable than the financial time series as it does not show a drastic change in its value even some of its commodities are affected. This work will provide a more precise results when weighed up to aged financial series forecasting algorithms.Originality/valueWe had built the customised loss function model by using LSTM scheme and have experimented on MCX index and as well as on its commodities and improvements in results are calculated for every epoch that we run for the whole rows present in the dataset. For every epoch we can visualise the improvements in loss. One more improvement that can be done to our model that the relationship between price difference and directional loss is specific to other financial scripts. Deep evaluations can be done to identify the best combination of these for a particular stock to obtain better results.


Sign in / Sign up

Export Citation Format

Share Document