scholarly journals A Relative Reference Responsive LRU based Page Replacement Algorithm for NAND Flash Memory

Webology ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 62-76
Author(s):  
Hitha Paulson ◽  
Dr.R. Rajesh

The acceptance of NAND flash memories in the electronic world, due to its non-volatility, high density, low power consumption, small size and fast access speed is hopeful. Due to the limitations in life span and wear levelling, this memory needs special attention in its management techniques compared to the conventional techniques used in hard disks. In this paper, an efficient page replacement algorithm is proposed for NAND flash based memory systems. The proposed algorithm focuses on decision making policies based on the relative reference ratio of pages in memory. The size adjustable eviction window and the relative reference based shadow list management technique proposed by the algorithm contribute much to the efficiency in page replacement procedure. The simulation tool based experiments conducted shows that the proposed algorithm performs superior to the well-known flash based page replacement algorithms with regard to page hit ratio and memory read/write operations.

Author(s):  
Myungsub Lee

In this paper, we propose a block classification with monitor and restriction (BCMR) method to isolate and reduce the interference of blocks in garbage collection and wear leveling. The proposed method monitors the endurance variation of blocks during garbage collection and detects hot blocks by making a restriction condition based on this information. This method induces block classification by its update frequency for garbage collection and wear leveling, resulting in a prolonged lifespan for NAND flash memory systems. The performance evaluation results show that the BCMR method prolonged the life of NAND flash memory systems by 3.95% and reduced the standard deviation per block by 7.4%, on average.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Guangxia Xu ◽  
Lingling Ren ◽  
Yanbing Liu

Due to the limited main memory resource of consumer electronics equipped with NAND flash memory as storage device, an efficient page replacement algorithm called FAPRA is proposed for NAND flash memory in the light of its inherent characteristics. FAPRA introduces an efficient victim page selection scheme taking into account the benefit-to-cost ratio for evicting each victim page candidate and the combined recency and frequency value, as well as the erase count of the block to which each page belongs. Since the dirty victim page often contains clean data that exist in both the main memory and the NAND flash memory based storage device, FAPRA only writes the dirty data within the victim page back to the NAND flash memory based storage device in order to reduce the redundant write operations. We conduct a series of trace-driven simulations and experimental results show that our proposed FAPRA algorithm outperforms the state-of-the-art algorithms in terms of page hit ratio, the number of write operations, runtime, and the degree of wear leveling.


Optik ◽  
2014 ◽  
Vol 125 (3) ◽  
pp. 1167-1173 ◽  
Author(s):  
Mingwei Lin ◽  
Shuyu Chen ◽  
Guiping Wang ◽  
Tianshu Wu

Author(s):  
Nikolaos Papandreou ◽  
Thomas Parnell ◽  
Haralampos Pozidis ◽  
Thomas Mittelholzer ◽  
Evangelos Eleftheriou ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1152
Author(s):  
Fei Chen ◽  
Bo Chen ◽  
Hongzhe Lin ◽  
Yachen Kong ◽  
Xin Liu ◽  
...  

Temperature effects should be well considered when designing flash-based memory systems, because they are a fundamental factor that affect both the performance and the reliability of NAND flash memories. In this work, aiming to comprehensively understanding the temperature effects on 3D NAND flash memory, triple-level-cell (TLC) mode charge-trap (CT) 3D NAND flash memory chips were characterized systematically in a wide temperature range (−30~70 °C), by focusing on the raw bit error rate (RBER) degradation during program/erase (P/E) cycling (endurance) and frequent reading (read disturb). It was observed that (1) the program time showed strong dependences on the temperature and P/E cycles, which could be well fitted by the proposed temperature-dependent cycling program time (TCPT) model; (2) RBER could be suppressed at higher temperatures, while its degradation weakly depended on the temperature, indicating that high-temperature operations would not accelerate the memory cells’ degradation; (3) read disturbs were much more serious at low temperatures, while it helped to recover a part of RBER at high temperatures.


2013 ◽  
Vol 59 (4) ◽  
pp. 779-785 ◽  
Author(s):  
Mingwei Lin ◽  
Shuyu Chen ◽  
Zhen Zhou

Sign in / Sign up

Export Citation Format

Share Document