scholarly journals Extended Distributed Framework for Feature Extraction in Remote Sensing Imagery with High Resolution

Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 1035-1046
Author(s):  
T. Naga Raju ◽  
Dr. Chittineni Suneetha

Remote Sensing imagery is used vastly in the areas of human activities investigation, environmental changes monitoring and geo-spatial data updation in a rapidly increasing way. Humans can easily and appropriately interpret the normally shot pictures but this is a difficult task for the computer to automatically interpret information from the given images. One of the prominent phases is in finding the way to extract the projected information from the given imagery and its conversion to wrath-ful data which can be used for further research. The motto is the generation of an algorithm which aims to be very efficient during of processing of huge images that include enhancement of efficiency in processing, correlation finding amongst given data and extraction of continuous features. In order to accomplish all these purposes as stated above, we hereby put forward an algorithm Extended Feature Extraction and Detection in High Resolution Remote Sensing (HRRS) Imagery to detect rivers. The proposed system is established with Hadoop Distributed Framework in order to enhance the efficiency of total system.

2021 ◽  
Vol 13 (23) ◽  
pp. 4766
Author(s):  
Lipeng Gao ◽  
Wenzhong Shi ◽  
Jun Zhu ◽  
Pan Shao ◽  
Sitong Sun ◽  
...  

3D GIS has attracted increasing attention from academics, industries, and governments with the increase in the requirements for the interoperability and integration of different sources of spatial data. Three-dimensional road extraction based on multisource remote sensing data is still a challenging task due to road occlusion and topological complexity. This paper presents a novel framework for 3D road extraction by integrating LiDAR point clouds and high-resolution remote sensing imagery. First, a multiscale collaborative representation-based road probability estimation method was proposed to segment road surfaces from high-resolution remote sensing imagery. Then, an automatic stratification process was conducted to specify the layer values of each road segment. Additionally, a multifactor filtering strategy was proposed in consideration of the complexity of ground features and the existence of noise in LiDAR points. Lastly, a least-square-based elevation interpolation method is used for restoring the elevation information of road sections blocked by overpasses. The experimental results based on two datasets in Hong Kong Island show that the proposed method obtains competitively satisfactory results.


2020 ◽  
Vol 86 (3) ◽  
pp. 153-160
Author(s):  
Xiaoyan Lu ◽  
Yanfei Zhong ◽  
Zhuo Zheng ◽  
Ji Zhao ◽  
Liangpei Zhang

Road detection in very-high-resolution remote sensing imagery is a hot research topic. However, the high resolution results in highly complex data distributions, which lead to much noise for road detection—for example, shadows and occlusions caused by disturbance on the roadside make it difficult to accurately recognize road. In this article, a novel edge-reinforced convolutional neural network, combined with multiscale feature extraction and edge reinforcement, is proposed to alleviate this problem. First, multiscale feature extraction is used in the center part of the proposed network to extract multiscale context information. Then edge reinforcement, applying a simplified U-Net to learn additional edge information, is used to restore the road information. The two operations can be used with different convolutional neural networks. Finally, two public road data sets are adopted to verify the effectiveness of the proposed approach, with experimental results demonstrating its superiority.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


Sign in / Sign up

Export Citation Format

Share Document