scholarly journals Phase Change Material on Augmentation of Fresh Water Production Using Pyramid Solar Still

2013 ◽  
Vol 2 (3) ◽  
pp. 115-120 ◽  
Author(s):  
S. Ravishankara ◽  
P.K. Nagarajan ◽  
D. Vijayakumar ◽  
M.K. Jawahar

The augmentation of fresh water and increase in the solar still efficiency of a triangular pyramid is added with phase change material (PCM) on the basin. Experimental studies were conducted and the effects of production of fresh water with and without PCM were investigated. Using paraffin as the PCM material, performance of the solar still were conducted on a hot, humid climate of Chennai (13°5′ 2" North, 80°16′ 12"East), India. The use of paraffin wax increases the latent heat storage so that the energy is stored in the PCM and in the absence of solar radiation it rejects its stored heat into the basin for further evaporation of water from the basin. Temperatures of water, Tw, Temperature of phase change material, TPCM, Temperature of cover, Tc were measured using thermocouple. Results show that there is an increase of maximum 20%, in productivity of fresh water with PCM. Keywords: fresh water production; PCM; thermal energy storage; phase change material

2020 ◽  
Vol 28 ◽  
pp. 101204 ◽  
Author(s):  
A.E. Kabeel ◽  
Ravishankar Sathyamurthy ◽  
A. Muthu Manokar ◽  
Swellam W. Sharshir ◽  
F.A. Essa ◽  
...  

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


2021 ◽  
Vol 1059 (1) ◽  
pp. 012010 ◽  
Author(s):  
N Boopalan ◽  
B Kalidasan ◽  
D Raj Kumar ◽  
E Ragupathi ◽  
M Gurumoorthy ◽  
...  

2021 ◽  
Vol 40 ◽  
pp. 102782
Author(s):  
A.S. Abdullah ◽  
Z.M. Omara ◽  
F.A. Essa ◽  
M.M. Younes ◽  
S. Shanmugan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document