Exploration of Plastic-Degrading Bacteria From Marina Beach, Semarang, Central Java

2021 ◽  
Vol 26 (4) ◽  
pp. 247-253
Author(s):  
Awalina Choirunnisa Rachmawati ◽  
Anggara Mahardika ◽  
Djohan Djohan ◽  
A.B. Susanto ◽  
Bibin Bintang Andriana

Plastic waste has threatens the environment and affect to the economic and tourism sectors, marine life, coastal ecosystems and human health. World Wide Fund for Nature (WWF) states that 85% of waste in the oceans is plastic. The Ministry of Environment and Forestry also noted that Indonesia experienced an increase in plastic waste from 14% in 2013 to 16% in 2016.  By 2020 the volume of plastic waste in Indonesia predicted to reach 67.8 million tons. Plastic waste takes 100-500 years to completely decompose. An alternative solution is to involve microorganisms to decompose plastic polymers. However, plastic waste reducing bacteria isolated from coastal ecosystem has not been much explored. In this study, an exploration of natural bacteria that degrades plastic waste from coastal ecosystems is carried out. Plastic samples were collected from the Marina Beach Semarang, Central Java. Plastic samples were taken from a depth of 0-10 cm in three coastal ecosystems: coastal sand sediments, rocks and mangroves. Samples then isolated and screened to obtain bacteria that have the potential to degrade polyethylene. Selected bacteria were identified by biochemical physiology according to the method of Cappuccino and Sherman and classified to genus level according to Bergey's Manual of Determinative Bacteriology and Bergey's Manual of Systematic Bacteriology. The results showed that three genera of bacteria had high polyethylene degradation potential with the speed of degradation: Enterobacteriaceae 0.0091%; Moraxella spp. 0.0066%; and Pseudomonas spp. 0.0076% per week.

2021 ◽  
Author(s):  
Michael Enzien ◽  
Sadie Starustka ◽  
Michael Gurecki ◽  
Trinity Fincher-Miller ◽  
Bryce Kuhn ◽  
...  

Abstract Inconsistent bacterial control and monitoring led to variability in Salt Water Disposal (SWD) well performance and injectivity creating excess costs in biocide applications and remedial work. A metagenomics study using Whole Genome Sequencing (WGS) was conducted to determine the source(s) of problematic microorganisms throughout the process life cycle: Freshwater> Drilling> Completion> Flowback> Produced water> SWD. A total of 30 metagenomes were collected from the 6 process stages and identification and quantification of the major microbial taxa from each of these stages were identified. "Taxonomy to Function" associations were identified for all the major taxa found in the SWD fluids. WGS was performed on positive Sulfate Reducing Bacteria (SRB) and Acid Producing Bacteria (APB) media bottles inoculated in the field for a Flowback sample. Four of the six major taxa found in SWD samples are considered groups of microorganisms known to cause microbiologically influenced corrosion (MIC): Clostridia, methanogens, SRB and Iron Reducing bacteria. Thermovirga and Thermotagae, were the two most abundant taxa found in SWD samples, both thermophilic halophilic fermenting bacteria. The Fe reducing bacteria Shewanella was only detected in Drilling and SWD fluids suggesting its source was Drilling fluids. Completion fluid metagenome profiles from two separate sites followed similar patterns. During middle of completions Proteobacteria phyla were dominant taxa represented mostly by Pseudomonas. Other abundant phyla were all characteristic of polymer degrading bacteria. None of these taxa were dominant populations identified in SWD waters. Fresh water only shared similar taxa with Drilling and Completion fluids. A few minor taxa from Drilling and Completion stages show up as significant taxa in SWD fluids. The majority of taxa found in SWD samples appear to originate from Flowback and Produced waters, although at lower abundances than found in SWD samples. It cannot be determined if the microorganisms found in Flowback and Produced waters were endemic to the formation or come from contaminated source waters, i.e. process equipment used to store and transport water sources. Petrotoga mobilis was the dominant population of bacteria that grew in both media bottles, 96% and 77% for SRB and APB, respectively, while Petrotoga was detected at 14% in the field sample. The most abundant bacteria detected in field sample were Clostridia (38%) while only 2.7% were detected in APB media. SRB media bottle had 0.18% SRB detected by WGS; APB media had 9% SRB population abundance. No SRB were detected in corresponding field sample or below detectable limits (BDL) for WGS methods (<0.01%). WGS was forensically used to successfully identify type and source of problematic microorganism in SWD facilities. Results from media bottle and field sample comparisons stress the importance of developing improved field monitoring techniques that more accurately detect the dominant microorganisms.


2020 ◽  
Vol 8 (9) ◽  
pp. 1375
Author(s):  
Ana J. Cavaleiro ◽  
Ana P. Guedes ◽  
Sérgio A. Silva ◽  
Ana L. Arantes ◽  
João C. Sequeira ◽  
...  

Long-chain fatty acids (LCFA) are common contaminants in municipal and industrial wastewater that can be converted anaerobically to methane. A low hydrogen partial pressure is required for LCFA degradation by anaerobic bacteria, requiring the establishment of syntrophic relationships with hydrogenotrophic methanogens. However, high LCFA loads can inhibit methanogens, hindering biodegradation. Because it has been suggested that anaerobic degradation of these compounds may be enhanced by the presence of alternative electron acceptors, such as iron, we investigated the effect of sub-stoichiometric amounts of Fe(III) on oleate (C18:1 LCFA) degradation by suspended and granular methanogenic sludge. Fe(III) accelerated oleate biodegradation and hydrogenotrophic methanogenesis in the assays with suspended sludge, with H2-consuming methanogens coexisting with iron-reducing bacteria. On the other hand, acetoclastic methanogenesis was delayed by Fe(III). These effects were less evident with granular sludge, possibly due to its higher initial methanogenic activity relative to suspended sludge. Enrichments with close-to-stoichiometric amounts of Fe(III) resulted in a microbial community mainly composed of Geobacter, Syntrophomonas, and Methanobacterium genera, with relative abundances of 83–89%, 3–6%, and 0.2–10%, respectively. In these enrichments, oleate was biodegraded to acetate and coupled to iron-reduction and methane production, revealing novel microbial interactions between syntrophic LCFA-degrading bacteria, iron-reducing bacteria, and methanogens.


2020 ◽  
Vol 9 (1) ◽  
pp. 148-157

Plastic is a synthetic polymer that is widely used in almost every field of life. The massive use of this synthetic polymer has led to the accumulation of this polymer in the environment thus polluting the environment. The general techniques in preventing plastic waste as landfill, incineration, recycling are considered less effective as they release some hazardous materials to the environment. Thus, the appropriate technique is needed to overcome this problem. Biodegradation is an enzymatic degradation involving some microorganisms including bacteria. This technique can be used to prevent the plastic waste problem. Plastic waste biodegradation occurred through several steps, including biodeterioration, depolymerization, and assimilation. Within this process, bacteria will secrete many enzymes that will degrade and convert plastic polymers into microbial biomass and gases. Thus, this process has fewer even no side effect.


2021 ◽  
Vol 13 (16) ◽  
pp. 9142
Author(s):  
Swikriti Khadke ◽  
Pragya Gupta ◽  
Shanmukh Rachakunta ◽  
Chandreswar Mahata ◽  
Suma Dawn ◽  
...  

Global plastic waste is increasing rapidly. In general, densely populated regions generate tons of plastic waste daily, which is sometimes disposed of on land or diverged to sea. Most of the plastics created in the form of waste have complex degradation behavior and are non-biodegradable by nature. These remain intact in the environment for a long time span and potentially originate complications within terrestrial and marine life ecosystems. The strategic management of plastic waste and recycling can preserve environmental species and associated costs. The key contribution in this work focuses on ongoing efforts to utilize plastic waste by introducing blockchain during plastic waste recycling. It is proposed that the efficiency of plastic recycling can be improved enormously by using the blockchain phenomenon. Automation for the segregation and collection of plastic waste can effectively establish a globally recognizable tool using blockchain-based applications. Collection and sorting of plastic recycling are feasible by keeping track of plastic with unique codes or digital badges throughout the supply chain. This approach can support a collaborative digital consortium for efficient plastic waste management, which can bring together multiple stakeholders, plastic manufacturers, government entities, retailers, suppliers, waste collectors, and recyclers.


2021 ◽  
Author(s):  
Karla Camacho-Cruz ◽  
Nestor Rey-Villiers ◽  
Diana Medina-Contreras ◽  
Paula Gonzalez-Jones ◽  
Fernando Arenas-Gonzalez ◽  
...  

<p>Concentration and flux of nitrogen in mangrove wetlands and coral reefs are modified by chemical and hydrodynamic mechanisms determined by natural and anthropic factors. Nearby anthropic activities impact ecosystems making them vulnerable, mainly due to nutrient flow increase which modifies biogeochemical cycles and trophic dynamics. Here, spatial-temporal variability of N in three tropical coastal ecosystems under different levels of anthropic pressure were studied; 1) trophic dynamics of mangroves in the Colombian Pacific using stable isotopes (δ<span><sup>13</sup></span>C, δ<span><sup>15</sup></span>N); 2) quantification of δ<span><sup>15</sup></span>N in octocorals from the northwestern region of Cuba as an indicator of wastewater pollution, and 3) determination of the trophic status of coastal and continental sites in the Mexican Caribbean using Karidy’s index and CE-CCA-001-89. In the mangrove food web, a value of 5 ‰ for δ<span><sup>15</sup></span>N was found, principally in systems with modified trophic structures close to tourist and urban centers. In octocorals, δ<span><sup>15</sup></span>N was significantly higher in reefs close to polluted river basins, evidencing a positive and significant correlation with the concentration of fecal and total coliforms, fecal streptococci, heterotrophic and sulfate-reducing bacteria. The nutrients analyzed in the Mexican Caribbean, exceeded the permissible limit for the protection of marine life, with Karidy’s index suggesting in some sites concentrations of nitrates in a mesotrophic and eutrophic state, principally during the months of highest tourist influx. The results confirm the effect and vulnerability of these ecosystems towards anthropic N, which could result in a reduction of ecosystem services and diversity.</p>


1978 ◽  
Vol 33 (1-2) ◽  
pp. 120-123 ◽  
Author(s):  
Hartmut Blecher ◽  
Renate Blecher ◽  
Rudolf Müller ◽  
Franz Lingens

Abstract Five different strains of bacteria ultilizing antipyrine as sole source of carbon were isolated from soil. It was shown by morphological and physiological examinations, that the new isolates are closely related to strains selected with the herbicide chloridazon. A ll of these bacteria are charac­ terized by special features and cannot be classified according to Bergey’s Manual of Determinative Bacteriology.Part of the strains which were selected with antipyrine not only grow with antipyrine but also with chloridazon. The others cannot be grown on chloridazon. However, resting cells of the latter group convert chloridazon to its catechol derivative (5-amino-4-chloro-2 (2,3-dihydroxyphenyl) -3 (2H)-pyridazinone). In these bacteria a catechol-2,3-dioxygenase (catechol: oxygen 2,3-oxido-reductase, EC 1.13.11.2) was found which readily catalyzes the cleavage of the catechol derivative of antipyrine (2,3-dimethyl-l-(2,3-dihydroxyphenyl)-pyrazolone (5)). The enzyme shows only slight activity with the corresponding derivative of chloridazon.


2021 ◽  
Vol 9 (11) ◽  
pp. 1289
Author(s):  
Walter Leal Filho ◽  
Julian Hunt ◽  
Marina Kovaleva

This Communication reports on the increases in the sizes of garbage patches, and their environmental implications, outlining the dimensions of what is a growing problem connected with the “plastisphere”. The paper presents some data on the distribution of garbage patches in the world’s oceans and makes some predictions on future growth, which is partly associated with the future increases in worldwide plastics production. The findings demonstrate that the size of the main garbage patches is increasing, posing a threat to the environment and marine life. The paper urges for better plastic waste management to prevent it from reaching the oceans, along with concerted actions in respect of plastic collection and cleaning up the oceans, which may include new technological solutions.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Rosa Acevedo-Barrios ◽  
Angela Bertel-Sevilla ◽  
Jose Alonso-Molina ◽  
Jesus Olivero-Verbel

Perchlorate (ClO4−) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted sites. The aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia. Isolates grew at concentrations up to 30% sodium chloride. The isolates tolerated pH variations ranging from 6.5 to 12.0 and perchlorate concentrations up to 10000 mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S rRNA gene sequence analysis indicated that the strains were phylogenetically related toVibrio,Bacillus,Salinovibrio,Staphylococcus, andNesiotobactergenera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean are promising resources for the bioremediation of perchlorate contamination.


2019 ◽  
Author(s):  
Hong Rae Kim ◽  
Hyun Min Lee ◽  
Eunbeen Jeon ◽  
Hee Cheol Yu ◽  
Sukkyoo Lee ◽  
...  

<p>Large quantities of plastic waste represent a grave social issue. Various attempts have been made to solve plastic waste problems, such as methods of natural plastic degradation. Currently, polystyrene (PS) is one of the most widely used plastics in many industries; therefore, degrading PS becomes a critical global issue. In this study, we isolated <i>Pseudomonas</i> sp., a strain of plastic-degrading bacteria known to survive only in the soil, from the gut of the superworms. Thus far, the degradation of PS by <i>Pseudomonas</i> sp. has barely been explored. We examined PS degradation using electronic microscopy, and measured changes in atomic distribution and contact angles with water droplets on the PS surface that represent a chemical change from hydrophobicity to hydrophilicity. During the process of PS degradation by <i>Pseudomonas</i> sp., we examined chemical structural changes using X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR) to check for the formation of C=O bonds and changes towards hydrophilicity. RT-qPCR was used to measure the gene expression level of <a></a><a>serine hydrolase </a>in <i>Pseudomonas</i>, an enzyme that mediates the plastic degradation. Our findings indicate that <i>Pseudomonas</i> present in the gut of the superworms participates in the degradation of plastics following ingestion. Moreover, this study also identified a candidate enzyme related to PS degradation in <i>Pseudomonas</i> for the first time. Thus, the findings of this study prove significance not only in presenting a novel function of <i>Pseudomonas</i> in the gut of superworms, but also in highlighting a potential solution for PS degradation.<b></b></p>


Sign in / Sign up

Export Citation Format

Share Document