scholarly journals Vertical Motion Optimization of Series 60 Hull Forms Using Response Surface Methods

Kapal ◽  
2020 ◽  
Vol 17 (3) ◽  
pp. 130-137
Author(s):  
Budi Utomo ◽  
Muhammad Iqbal

There are many aspects to analyze seakeeping performance, one of which is the ship's vertical motion. As well-known, vertical motion and its derivatives, vertical velocity and acceleration, will be related to other aspects of seakeeping performance, such as slamming, deck wetness, and MSI. This study discusses optimizing the hull shape with small vertical motion using the Response Surface Methods (RSM). This research aims to minimize the ship's vertical motion so that the ship's performance is better than the initial one. Besides, this research was conducted to apply the RSM in the naval architecture field. The hull's shape used in this study is Series 60 hull form with a length of 31 m. The variables used for the optimization process are the ratio of L/B (X1) and B/T (X2) in the range of ± 10% with fixed displacement. Seakeeping analysis was carried out at a speed of 6.78 knots (Fr 0.2), a heading angle of 180°, and a significant wave height of 0.77 meters. The results show that the optimum model is found in Model 9 where the value of X1 = -2.94 or L/B = 6.71 and X2 = 5 or B/T = 2.75. Model 9 can reduce the vertical motion of the ship by 16.38%.

2004 ◽  
Vol 48 (02) ◽  
pp. 77-117 ◽  
Author(s):  
Paul D. Sclavounos ◽  
Henning Borgen

The seakeeping performance is studied of a foil-assisted high-speed monohull vessel using a state-of-the-art three-dimensional Rankine panel method. The vessel is equipped with a bow hydrofoil acting as a passive heave and pitch motion-control device in waves. The formulation of the seakeeping of ships equipped with lifting appendages is developed, and the mechanisms responsible for the reduction of the heave and pitch motions of high- speed vessels equipped with hydrofoils are studied. The sensitivity of the heave and pitch motions on the longitudinal position of the hydrofoil is studied. It is found that the most efficient location for the hydrofoil is at the ship bow leading to a 50% reduction of the root mean square values of the heave and pitch motions in a Joint North Sea Wave Project (JONSWAP) spectrum. Several extensions of the analysis of the present paper are discussed. They include the reduction of the roll motion of high-speed vessels, the design of optimal active motion-control mechanisms, and the coupling of the hull form and lifting appendage design for high-speed monohull vessels.


Author(s):  
Nicholas Boyd ◽  
David Molyneux

Throughout the world many Platform Supply Vessel designs have been proposed as the optimal form for their given operating environment, but evaluating these claims has been difficult due to a poor understanding of the relationships between hull form shapes and performance for these vessels. This paper presents the results of analysis aimed at determining these relationships. Results of CFD calculations to determine the Effective Horsepower/tonne for a series of PSV designs were presented in the paper A step towards an optimum PSV Hull form. This paper presents results for 16 separate hull forms, which were designed as each possible combination of four two-level hull form parameters. The hull form features considered were bow shape (vertical stem or bulbous), flat of bottom (flat or deadrise), length of parallel mid body (short or long), and stern shape (convention or integrated); resistance was calculated at two typical operating speeds (10 and 14 knots). This set of results was favourable for analysis using the statistical design of experiments technique: analysis of variance, which was used to determine the relationship between the hull and resistance performance. The same hull form series was used to study the effects of the hull form parameters on motions in head waves. A 2 level factorial experiment was designed based on the hull parameters with the heave and pitch response calculated using the potential flow ship motion prediction code Shipmo3D, for each of two representative wave conditions (summer light seas and winter heavy seas) at the zero speed and 10 knot operating speed. Analysis of variance was used to analyze the heave and pitch responses measured, and was used to determine the relationship between each hull parameter and each response. In both cases a 5% F-test was used to determine the significance of each parameter studied, and the significant effects were analyzed to determine their contributions to the overall model of the data. The results have found the relationships between the hull design parameters and the Effective Horespower/tonne, heave, and pitch response of the vessel, indicating which factors provide the largest contribution to minimizing each response. The interaction effects between factors were also examined to allow for a generalized understanding of the resulting effect of selecting one hull parameter over another. A numerical model combining all significant factors was fitted to the data, allowing for multiple objective optimization to determine which hull forms provide the most desirable performance for each response.


2021 ◽  
pp. 126411
Author(s):  
Mingjie Chen ◽  
Ali Al-Maktoumi ◽  
Mohammad Mahdi Rajabi ◽  
Azizallah Izady ◽  
Hilal Al-Mamari ◽  
...  

2016 ◽  
Vol 30 (6) ◽  
pp. 2615-2625 ◽  
Author(s):  
Oguz Dogan ◽  
Fatih Karpat ◽  
Celalettin Yuce ◽  
Necmettin Kaya ◽  
Nurettin Yavuz ◽  
...  

1988 ◽  
Vol 25 (04) ◽  
pp. 239-252
Author(s):  
G. Robed Lamb

Even though in 1987 there were only a dozen SWATH (smali-waterplane-area twin-hull) craft and ships afloat around the world, word of their markedly superior seakeeping performance is spreading rapidly. The number of SWATH vessels is likely to double within five years. As in many other areas of technology, the United States and Japan are the acknowledged leaders in the development and practical application of the SWATH concept. This paper reviews the characteristics of existing SWATH craft and ships from the standpoint of the stated seakeeping objective. Hull form differences between four SWATH craft and ships, including the Navy's SSP Kairnalino, are analyzed and interpreted. Important considerations for the early-stage design of a SWATH ship are discussed. Differences in the range of feasible hull form geometries for coastal areas and unrestricted ocean operations, and for low-speed versus moderately high-speed applications, are pointed out.


Sign in / Sign up

Export Citation Format

Share Document