scholarly journals SKEW NORMAL AND SKEW STUDENT-T DISTRIBUTIONS ON GARCH(1,1) MODEL

2021 ◽  
Vol 14 (1) ◽  
pp. 21-32
Author(s):  
Didit Budi Nugroho ◽  
Agus Priyono ◽  
Bambang Susanto

The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) type models have become important tools in financial application since their ability to estimate the volatility of financial time series data. In the empirical financial literature, the presence of skewness and heavy-tails have impacts on how well the GARCH-type models able to capture the financial market volatility sufficiently. This study estimates the volatility of financial asset returns based on the GARCH(1,1) model assuming Skew Normal and Skew Student-t distributions for the returns errors. The models are applied to daily returns of FTSE100 and IBEX35 stock indices from January 2000 to December 2017. The model parameters are estimated by using the Generalized Reduced Gradient Non-Linear method in Excel’s Solver and also the Adaptive Random Walk Metropolis method implemented in Matlab. The estimation results from fitting the models to real data demonstrate that Excel’s Solver is a promising way for estimating the parameters of the GARCH(1,1) models with non-Normal distribution, indicated by the accuracy of the estimation of Excel’s Solver. The fitting performance of models is evaluated by using log-likelihood ratio test and it indicates that the GARCH(1,1) model with Skew Student-t distribution provides the best fitting, followed by Student-t, Skew-Normal, and Normal distributions.

2020 ◽  
Vol 15 (3) ◽  
pp. 225-237
Author(s):  
Saurabh Kumar ◽  
Jitendra Kumar ◽  
Vikas Kumar Sharma ◽  
Varun Agiwal

This paper deals with the problem of modelling time series data with structural breaks occur at multiple time points that may result in varying order of the model at every structural break. A flexible and generalized class of Autoregressive (AR) models with multiple structural breaks is proposed for modelling in such situations. Estimation of model parameters are discussed in both classical and Bayesian frameworks. Since the joint posterior of the parameters is not analytically tractable, we employ a Markov Chain Monte Carlo method, Gibbs sampling to simulate posterior sample. To verify the order change, a hypotheses test is constructed using posterior probability and compared with that of without breaks. The methodologies proposed here are illustrated by means of simulation study and a real data analysis.


2015 ◽  
Vol 32 (4) ◽  
pp. 1023-1054 ◽  
Author(s):  
Rong Liu ◽  
Lijian Yang

The semiparametric GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model of Yang (2006, Journal of Econometrics 130, 365–384) has combined the flexibility of a nonparametric link function with the dependence on infinitely many past observations of the classic GARCH model. We propose a cubic spline procedure to estimate the unknown quantities in the semiparametric GARCH model that is intuitively appealing due to its simplicity. The theoretical properties of the procedure are the same as the kernel procedure, while simulated and real data examples show that the numerical performance is either better than or comparable to the kernel method. The new method is computationally much more efficient than the kernel method and very useful for analyzing large financial time series data.


2021 ◽  
Vol 11 (9) ◽  
pp. 3876
Author(s):  
Weiming Mai ◽  
Raymond S. T. Lee

Chart patterns are significant for financial market behavior analysis. Lots of approaches have been proposed to detect specific patterns in financial time series data, most of them can be categorized as distance-based or training-based. In this paper, we applied a trainable continuous Hopfield Neural Network for financial time series pattern matching. The Perceptually Important Points (PIP) segmentation method is used as the data preprocessing procedure to reduce the fluctuation. We conducted a synthetic data experiment on both high-level noisy data and low-level noisy data. The result shows that our proposed method outperforms the Template Based (TB) and Euclidean Distance (ED) and has an advantage over Dynamic Time Warping (DTW) in terms of the processing time. That indicates the Hopfield network has a potential advantage over other distance-based matching methods.


2016 ◽  
Vol 13 (2) ◽  
pp. 65-75 ◽  
Author(s):  
Alex Bara ◽  
Calvin Mudzingiri

The role of financial innovation on economic growth in developing countries has not been actively pursued. Stemming from the finance-growth nexus, literature suggests that financial innovation has a relationship to growth, which could be either positive or negative. Implicitly, financial innovation has a good and a dark side that affects growth. This study establishes the causal relationship between financial innovation and economic growth in Zimbabwe empirically. Using the Autoregressive Distributed Lag (ARDL) bounds tests and Granger causality tests on financial time series data of Zimbabwe for the period 1980-2013, the study finds that financial innovation has a relationship to economic growth that varies depending on the variable used to measure financial innovation. A long-run, growth-driven financial innovationis confirmed, with causality running from economic growth to financial innovation. Bi-directional causality also exists after conditionally netting-off financial development. Policies that enhance economic growth inter-twined with financial innovation are essential, if developing countries, such as Zimbabwe, aim to maximize economic development


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 95 ◽  
Author(s):  
Johannes Stübinger ◽  
Katharina Adler

This paper develops the generalized causality algorithm and applies it to a multitude of data from the fields of economics and finance. Specifically, our parameter-free algorithm efficiently determines the optimal non-linear mapping and identifies varying lead–lag effects between two given time series. This procedure allows an elastic adjustment of the time axis to find similar but phase-shifted sequences—structural breaks in their relationship are also captured. A large-scale simulation study validates the outperformance in the vast majority of parameter constellations in terms of efficiency, robustness, and feasibility. Finally, the presented methodology is applied to real data from the areas of macroeconomics, finance, and metal. Highest similarity show the pairs of gross domestic product and consumer price index (macroeconomics), S&P 500 index and Deutscher Aktienindex (finance), as well as gold and silver (metal). In addition, the algorithm takes full use of its flexibility and identifies both various structural breaks and regime patterns over time, which are (partly) well documented in the literature.


2013 ◽  
Vol 347-350 ◽  
pp. 3331-3335
Author(s):  
Qian Ru Wang ◽  
Xi Wei Chen ◽  
Da Shi Luo ◽  
Yu Feng Wei ◽  
Li Ya Jin ◽  
...  

Grey system theory has been widely used to forecast the economic data that are often highly nonlinear, irregular and non-stationary. Many models based on grey system theory could adapt to various economic time series data. However, some of these models didnt consider the impact of the model parameters, or only considered a simple change of the model parameters for the prediction. In this paper, we proposed the PSO based GM (1, 1) model using the optimized parameters in order to improve the forecasting accuracy. The experiment shows that PSO based GM (1, 1) gets much better forecasting accuracy compared with other widely used grey models on the actual chaotic economic data.


2007 ◽  
Vol 9 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Nikhil S. Padhye ◽  
Sandra K. Hanneman

The application of cosinor models to long time series requires special attention. With increasing length of the time series, the presence of noise and drifts in rhythm parameters from cycle to cycle lead to rapid deterioration of cosinor models. The sensitivity of amplitude and model-fit to the data length is demonstrated for body temperature data from ambulatory menstrual cycling and menopausal women and from ambulatory male swine. It follows that amplitude comparisons between studies cannot be made independent of consideration of the data length. Cosinor analysis may be carried out on serial-sections of the series for improved model-fit and for tracking changes in rhythm parameters. Noise and drift reduction can also be achieved by folding the series onto a single cycle, which leads to substantial gains in the model-fit but lowers the amplitude. Central values of model parameters are negligibly changed by consideration of the autoregressive nature of residuals.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Md. Rabiul Islam ◽  
Md. Rashed-Al-Mahfuz ◽  
Shamim Ahmad ◽  
Md. Khademul Islam Molla

This paper presents a subband approach to financial time series prediction. Multivariate empirical mode decomposition (MEMD) is employed here for multiband representation of multichannel financial time series together. Autoregressive moving average (ARMA) model is used in prediction of individual subband of any time series data. Then all the predicted subband signals are summed up to obtain the overall prediction. The ARMA model works better for stationary signal. With multiband representation, each subband becomes a band-limited (narrow band) signal and hence better prediction is achieved. The performance of the proposed MEMD-ARMA model is compared with classical EMD, discrete wavelet transform (DWT), and with full band ARMA model in terms of signal-to-noise ratio (SNR) and mean square error (MSE) between the original and predicted time series. The simulation results show that the MEMD-ARMA-based method performs better than the other methods.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 441 ◽  
Author(s):  
Maria C. Mariani ◽  
Peter K. Asante ◽  
Md Al Masum Bhuiyan ◽  
Maria P. Beccar-Varela ◽  
Sebastian Jaroszewicz ◽  
...  

In this study, we use the Diffusion Entropy Analysis (DEA) to analyze and detect the scaling properties of time series from both emerging and well established markets as well as volcanic eruptions recorded by a seismic station, both financial and volcanic time series data have high frequencies. The objective is to determine whether they follow a Gaussian or Lévy distribution, as well as establish the existence of long-range correlations in these time series. The results obtained from the DEA technique are compared with the Hurst R/S analysis and Detrended Fluctuation Analysis (DFA) methodologies. We conclude that these methodologies are effective in classifying the high frequency financial indices and volcanic eruption data—the financial time series can be characterized by a Lévy walk while the volcanic time series is characterized by a Lévy flight.


Sign in / Sign up

Export Citation Format

Share Document