Nutrient-dependent protein trafficking in saccharomyces cerevisiae

Author(s):  
Pwu Lau
1996 ◽  
Vol 16 (8) ◽  
pp. 4357-4365 ◽  
Author(s):  
D Huang ◽  
I Farkas ◽  
P J Roach

In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p.


1986 ◽  
Vol 6 (12) ◽  
pp. 4690-4696
Author(s):  
B Lalonde ◽  
B Arcangioli ◽  
L Guarente

Several site-directed mutagenesis regimens were used to generate single- and multiple-base substitutions in the upstream activation site UAS1 of the Saccharomyces cerevisiae CYC1 gene. Mutations resulting in large reductions in activity of the site lie in two distinct regions. Six single-base changes in a region A, between -288 and -285, all resulted in a 15-fold reduction in activity. Synthetic sites built up solely of multimers of the -289 to -285 sequence ACCGA behaved as carbon catabolite-sensitive UASs. In addition, substitution mutations in a second region, at nucleotides -266 and -265, virtually eliminated UAS1 activity. These mutations abolished the binding of a heme-dependent protein factor in vitro. Thus, UAS1 contains two essential regions both of which are required for its activity.


1987 ◽  
Vol 7 (1) ◽  
pp. 244-250
Author(s):  
D Y Shin ◽  
K Matsumoto ◽  
H Iida ◽  
I Uno ◽  
T Ishikawa

When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Alexander Muir ◽  
Françoise M Roelants ◽  
Garrett Timmons ◽  
Kristin L Leskoske ◽  
Jeremy Thorner

In eukaryotes, exposure to hypertonic conditions activates a MAPK (Hog1 in Saccharomyces cerevisiae and ortholog p38 in human cells). In yeast, intracellular glycerol accumulates to counterbalance the high external osmolarity. To prevent glycerol efflux, Hog1 action impedes the function of the aquaglyceroporin Fps1, in part, by displacing channel co-activators (Rgc1/2). However, Fps1 closes upon hyperosmotic shock even in hog1∆ cells, indicating another mechanism to prevent Fps1-mediated glycerol efflux. In our prior proteome-wide screen, Fps1 was identified as a target of TORC2-dependent protein kinase Ypk1 (<xref ref-type="bibr" rid="bib30">Muir et al., 2014</xref>). We show here that Fps1 is an authentic Ypk1 substrate and that the open channel state of Fps1 requires phosphorylation by Ypk1. Moreover, hyperosmotic conditions block TORC2-dependent Ypk1-mediated Fps1 phosphorylation, causing channel closure, glycerol accumulation, and enhanced survival under hyperosmotic stress. These events are all Hog1-independent. Our findings define the underlying molecular basis of a new mechanism for responding to hypertonic conditions.


1987 ◽  
Vol 7 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
T Toda ◽  
S Cameron ◽  
P Sass ◽  
M Zoller ◽  
J D Scott ◽  
...  

We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.


1991 ◽  
Vol 11 (6) ◽  
pp. 3369-3373
Author(s):  
R B Wilson ◽  
A A Brenner ◽  
T B White ◽  
M J Engler ◽  
J P Gaughran ◽  
...  

The Saccharomyces cerevisiae SRK1 gene, when expressed on a low-copy shuttle vector, partially suppresses the phenotype associated with elevated levels of cyclic AMP-dependent protein kinase activity and suppresses the temperature-sensitive cell cycle arrest of the ins1 mutant. SRK1 is located on chromosome IV, 3 centimorgans from gcn2. A mutant carrying a deletion mutation in srk1 is viable. SRK1 encodes a 140-kDa protein with homology to the dis3+ protein from Schizosaccharomyces pombe. The ability of SRK1 to alleviate partially the defects caused by high levels of cyclic AMP-dependent protein kinase and the similarity of its encoded protein to dis3+ suggest that SRK1 may have a role in protein phosphatase function.


Sign in / Sign up

Export Citation Format

Share Document