scholarly journals Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae.

1996 ◽  
Vol 16 (8) ◽  
pp. 4357-4365 ◽  
Author(s):  
D Huang ◽  
I Farkas ◽  
P J Roach

In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p.

2001 ◽  
Vol 21 (17) ◽  
pp. 5742-5752 ◽  
Author(s):  
Zhong Wang ◽  
Wayne A. Wilson ◽  
Marie A. Fujino ◽  
Peter J. Roach

ABSTRACT In the yeast Saccharomyces cerevisiae, glycogen is accumulated as a carbohydrate reserve when cells are deprived of nutrients. Yeast mutated in SNF1, a gene encoding a protein kinase required for glucose derepression, has diminished glycogen accumulation and concomitant inactivation of glycogen synthase. Restoration of synthesis in an snf1 strain results only in transient glycogen accumulation, implying the existence of otherSNF1-dependent controls of glycogen storage. A genetic screen revealed that two genes involved in autophagy, APG1and APG13, may be regulated by SNF1. Increased autophagic activity was observed in wild-type cells entering the stationary phase, but this induction was impaired in ansnf1 strain. Mutants defective for autophagy were able to synthesize glycogen upon approaching the stationary phase, but were unable to maintain their glycogen stores, because subsequent synthesis was impaired and degradation by phosphorylase, Gph1p, was enhanced. Thus, deletion of GPH1 partially reversed the loss of glycogen accumulation in autophagy mutants. Loss of the vacuolar glucosidase, SGA1, also protected glycogen stores, but only very late in the stationary phase. Gph1p and Sga1p may therefore degrade physically distinct pools of glycogen. Pho85p is a cyclin-dependent protein kinase that antagonizes SNF1control of glycogen synthesis. Induction of autophagy inpho85 mutants entering the stationary phase was exaggerated compared to the level in wild-type cells, but was blocked in apg1 pho85 mutants. We propose that Snf1p and Pho85p are, respectively, positive and negative regulators of autophagy, probably via Apg1 and/or Apg13. Defective glycogen storage in snf1cells can be attributed to both defective synthesis upon entry into stationary phase and impaired maintenance of glycogen levels caused by the lack of autophagy.


1989 ◽  
Vol 262 (2) ◽  
pp. 563-567 ◽  
Author(s):  
C Villar-Palasi ◽  
J J Guinovart ◽  
A M Gómez-Foix ◽  
J E Rodriguez-Gil ◽  
F Bosch

In rat hepatocytes, vanadate modifies neither the intracellular concentration of cyclic AMP nor the -cyclic AMP/+cyclic AMP activity ratio for cyclic AMP-dependent protein kinase. Vanadate can, however, counteract the increase in cyclic AMP and the increase in the -cyclic AMP/+cyclic AMP activity ratio of cyclic AMP-dependent protein kinase induced by glucagon. On the other hand, vanadate treatment of hepatocytes can produce a time- and concentration-dependent increase in cyclic AMP- and Ca2+-independent casein kinase activity. Maximal activation at the optimal time with 5 mM-vanadate was about 70% over control. A clear relationship was observed between the activation of casein kinase and the inactivation of glycogen synthase after vanadate treatment. These results suggest that casein kinase activity may be involved in vanadate actions in rat hepatocytes.


1998 ◽  
Vol 18 (6) ◽  
pp. 3289-3299 ◽  
Author(s):  
Dongqing Huang ◽  
Jason Moffat ◽  
Wayne A. Wilson ◽  
Lynda Moore ◽  
Christine Cheng ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlikepho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation ofPHO85 suppressed the glycogen storage deficiency ofsnf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10.


PLoS ONE ◽  
2010 ◽  
Vol 5 (8) ◽  
pp. e12356 ◽  
Author(s):  
Mykola Maydan ◽  
Paul C. McDonald ◽  
Jasbinder Sanghera ◽  
Jun Yan ◽  
Charalampos Rallis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document