scholarly journals Mesenchymal Stem Cells Isolated from the Human Bone Marrow: Cultivation, Phenotypic Analysis and Changes in Proliferation Kinetics

2006 ◽  
Vol 49 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Tomáš Soukup ◽  
Jaroslav Mokrý ◽  
Jana Karbanová ◽  
Robert Pytlík ◽  
Petr Suchomel ◽  
...  

Mesenchymal Stem Cells (MSCs) are rare elements living in various organs (e.g., bone marrow), able to differentiate into specialized tissues, such as bone, cartilage, tendon, and myocardium. Since the first description of MSCs by Fridenshtein, several investigators have shown that these cells can also differentiate into chondrocytes, adipocytes, and, at least, in rodents into skeletal myoblasts. Later on, more primitive progenitor cells were characterized, able to give rise not only to limb-bud mesoderm, but also to cells of visceral mesoderm. Those cells were named mesodermal progenitor cells (MPCs). The aim of our study was to characterize and compare the biological properties and spontaneous differentiation potential of two different cell types (MSCs and MPCs) isolated from the human vertebral body bone marrow. The results of our experiments proved that the MPCs can be expanded beyond Hayflick’s limit and differed from MSCs in morphology, biological and phenotypic characteristics. Because of their high proliferative and differentiation potential, MPCs can become more attractive source of adult stem cells for therapeutic purposes.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ivana Catacchio ◽  
Simona Berardi ◽  
Antonia Reale ◽  
Annunziata De Luisi ◽  
Vito Racanelli ◽  
...  

In contrast to the pluripotentembryonic stem cells(ESCs) which are able to give rise to all cell types of the body, mammalianadult stem cells(ASCs) appeared to be more limited in their differentiation potential and to be committed to their tissue of origin. Recently, surprising new findings have contradicted central dogmas of commitment of ASCs by showing their plasticity to differentiate across tissue lineage boundaries, irrespective of classical germ layer designations. The present paper supports the plasticity of thebone marrow stem cells(BMSCs), bringing the most striking and the latest evidences of the transdifferentiation properties of thebone marrow hematopoietic and mesenchymal stem cells(BMHSCs, and BMMSCs), the two BM populations of ASCs better characterized. In addition, we report the possible mechanisms that may explain these events, outlining the clinical importance of these phenomena and the relative problems.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2615-2625 ◽  
Author(s):  
Morayma Reyes ◽  
Troy Lund ◽  
Todd Lenvik ◽  
Dean Aguiar ◽  
Lisa Koodie ◽  
...  

Abstract It is here reported that mesenchymal stem cells known to give rise to limb-bud mesoderm can, at the single-cell level, also differentiate into cells of visceral mesoderm and can be expanded extensively by means of clinically applicable methods. These cells were named mesodermal progenitor cells (MPCs). MPCs were selected by depleting bone marrow mononuclear cells from more than 30 healthy human donors of CD45+/glycophorin-A (GlyA)+ cells. Cells were cultured on fibronectin with epidermal growth factor and platelet-derived growth factor BB and 2% or less fetal calf serum. It was found that 1/5 × 103CD45−GlyA− cells, or 1/106 bone marrow mononuclear cells, gave rise to clusters of small adherent cells. Cell-doubling time was 48 to 72 hours, and cells have been expanded in culture for more than 60 cell doublings. MPCs are CD34−, CD44low, CD45−, CD117 (cKit)−, class I–HLA−, and HLA-DR−. MPCs differentiated into cells of limb-bud mesoderm (osteoblasts, chondrocytes, adipocytes, stroma cells, and skeletal myoblasts) as well as visceral mesoderm (endothelial cells). Retroviral marking was used to definitively prove that single MPCs can differentiate into cells of limb bud and visceral mesoderm. Thus, MPCs that proliferate without obvious senescence under clinically applicable conditions and differentiate at the single-cell level not only into mesenchymal cells but also cells of visceral mesoderm may be an ideal source of stem cells for treatment of genetic or degenerative disorders affecting cells of mesodermal origin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Watchareewan Rodprasert ◽  
Sirirat Nantavisai ◽  
Koranis Pathanachai ◽  
Prasit Pavasant ◽  
Thanaphum Osathanon ◽  
...  

AbstractThe trend of regenerative therapy for diabetes in human and veterinary practices has conceptually been proven according to the Edmonton protocol and animal models. Establishing an alternative insulin-producing cell (IPC) resource for further clinical application is a challenging task. This study investigated IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs). The results illustrated that cBM-MSCs and cAD-MSCs contain distinct pancreatic differentiation potential and require the tailor-made induction protocols. The effective generation of cBM-MSC-derived IPCs needs the integration of genetic and microenvironment manipulation using a hanging-drop culture of PDX1-transfected cBM-MSCs under a three-step pancreatic induction protocol. However, this protocol is resource- and time-consuming. Another study on cAD-MSC-derived IPC generation found that IPC colonies could be obtained by a low attachment culture under the three-step induction protocol. Further, Notch signaling inhibition during pancreatic endoderm/progenitor induction yielded IPC colonies through the trend of glucose-responsive C-peptide secretion. Thus, this study showed that IPCs could be obtained from cBM-MSCs and cAD-MSCs through different induction techniques. Also, further signaling manipulation studies should be conducted to maximize the protocol’s efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2009 ◽  
Vol 132 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Erdal Karaoz ◽  
Ayça Aksoy ◽  
Selda Ayhan ◽  
Ayla Eker Sarıboyacı ◽  
Figen Kaymaz ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document