scholarly journals Exploring tablet PC lectures: Lecturer experiences and student perceptions in biomedicine

Author(s):  
Julia Choate ◽  
George Kotsanas ◽  
Phillip Dawson

<p>Lecturers using tablet PCs with specialised pens can utilise real-time changes in lecture delivery via digital inking. We investigated student perceptions and lecturer experiences of tablet PC lectures in large-enrolment biomedicine subjects. Lecturers used PowerPoint or Classroom Presenter software for lecture preparation and in-lecture pen-based inking. Using surveys and lecturer interviews, students and lecturers were asked to reflect on their tablet PC lectures in comparison to non-tablet lectures that used prepared images and a laser pointer. Quantitative survey responses suggested that students felt that the tablet lectures were more interesting, that they were more capable of keeping up with the lecturer, and they enhanced their understanding of the lecture content. Qualitative analysis of written comments indicated that students appreciated the real-time writing and drawings, particularly because these were visible on lecture recordings. When reflecting on their non-tablet lectures, most lecturers used the pen-based writing, drawing and highlighting tablet functions and reduced lecture pace and content for their tablet lectures.  Long-term tablet use led to lecturers making more use of digital inking, with less use of prepared images. Our results support the idea that tablet PC-supported lectures are conducive to improved management of cognitive load via reduced lecture pace and content.</p><p> </p>

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4597
Author(s):  
Zi-Xuan Yu ◽  
Meng-Shi Li ◽  
Yi-Peng Xu ◽  
Sheraz Aslam ◽  
Yuan-Kang Li

The optimal planning of grid-connected microgrids (MGs) has been extensively studied in recent years. While most of the previous studies have used fixed or time-of-use (TOU) prices for the optimal sizing of MGs, this work introduces real-time pricing (RTP) for implementing a demand response (DR) program according to the national grid prices of Iran. In addition to the long-term planning of MG, the day-ahead operation of MG is also analyzed to get a better understanding of the DR program for daily electricity dispatch. For this purpose, four different days corresponding to the four seasons are selected for further analysis. In addition, various impacts of the proposed DR program on the MG planning results, including sizing and best configuration, net present cost (NPC) and cost of energy (COE), and emission generation by the utility grid, are investigated. The optimization results show that the implementation of the DR program has a positive impact on the technical, economic, and environmental aspects of MG. The NPC and COE are reduced by about USD 3700 and USD 0.0025/kWh, respectively. The component size is also reduced, resulting in a reduction in the initial cost. Carbon emissions are also reduced by 185 kg/year.


2010 ◽  
Vol 31 (3) ◽  
pp. 252-287 ◽  
Author(s):  
Katie Barnfield ◽  
Isabelle Buchstaller

We report on longitudinal changes in the system of intensification in an innovative corpus that spans five decades of dialectal speech. Our analyses allow us — for the first time in a British context — to trace the quantitative development in the variable across four generations. Longitudinal analysis across real and apparent time determines the effect of extralinguistic and intralinguistic variables on intensification in Tyneside and tests to what extent real time data corroborates trends reported from previous apparent time analyses. Long-term competition within the variable manifests itself in distinctive developmental trajectories: expansion — both proportionally within the variable as well as across adjectival categories — tends to follow one of three types of patterns, exemplified, respectively, by really, so and dead. Variant retraction, however, follows only one schema. Importantly, numerical decline in the system does not necessarily go hand in hand with a reduction in breadth of application.


2021 ◽  
Author(s):  
He Zhang ◽  
Jianxun Zhang ◽  
Rui Wang ◽  
Yazhe Huang ◽  
Mengxiao Zhang ◽  
...  

AbstractWith the rapid development of the Internet of Things (IoT) in the 5G age, the construction of smart cities around the world consequents on the exploration of carbon reduction path based on IoT technology is an important direction for global low carbon city research. Carbon dioxide emissions in small cities are usually higher than that in large and medium cities. However, due to the huge difference in data environment between small cities and Medium-large sized cities, the weak hardware foundation of the IoT, and the high input cost, the construction of a small city smart carbon monitoring platform has not yet been carried out. This paper proposes a real-time estimate model of carbon emissions at the block and street scale and designs a smart carbon monitoring platform that combines traditional carbon control methods with IoT technology. It can exist long-term data by using real-time data acquired with the sensing device. Therefore, the dynamic monitoring and management of low-carbon development in small cities can be achieved. The contributions are summarized as follows: (1) Intelligent thermoelectric systems, industrial energy monitoring systems, and intelligent transportation systems are three core systems of the monitoring platform. Carbon emission measurement methods based on sample monitoring, long-term data, and real-time data have been established, they can solve the problem of the high cost of IoT equipment in small cities. (2) Combined with long-term data, the real-time correction technology, they can dispose of the matter of differences in carbon emission measurement under diverse scales.


2017 ◽  
Vol 8 (2) ◽  
pp. 870-875
Author(s):  
M. J. Zhang ◽  
R. R. Zhang ◽  
G. Xu ◽  
L. P. Chen

Problems in the process of manned agricultural aerial spraying, such as heavy workload in route planning, overlaps or omissions in spraying seriously reduce the efficiency of spraying and utilization rate of pesticides. This paper presents the design and development of a navigation system for manned agricultural aerial spraying based on an industrial tablet PC. This system provides three key functions: route planning, spraying navigation and real-time evaluation of spraying quality. The test and application results show that this system has high efficiency in route planning, and the average coverage rate of spraying could reach as high as 96%. Its application effect is remarkable, and as a result, this system can meet the demand of manned agricultural aerial spraying in route planning and navigation.


2018 ◽  
Vol 15 (8) ◽  
pp. 750-759 ◽  
Author(s):  
Fatemeh Jafari ◽  
S. Jamshid Mousavi ◽  
Jafar Yazdi ◽  
Joong Hoon Kim

2017 ◽  
Vol 158 ◽  
pp. 479-493 ◽  
Author(s):  
Qian Wu ◽  
Sriramya Nair ◽  
Michelle Shuck ◽  
Eric van Oort ◽  
Artur Guzik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document