Intensifiers on Tyneside

2010 ◽  
Vol 31 (3) ◽  
pp. 252-287 ◽  
Author(s):  
Katie Barnfield ◽  
Isabelle Buchstaller

We report on longitudinal changes in the system of intensification in an innovative corpus that spans five decades of dialectal speech. Our analyses allow us — for the first time in a British context — to trace the quantitative development in the variable across four generations. Longitudinal analysis across real and apparent time determines the effect of extralinguistic and intralinguistic variables on intensification in Tyneside and tests to what extent real time data corroborates trends reported from previous apparent time analyses. Long-term competition within the variable manifests itself in distinctive developmental trajectories: expansion — both proportionally within the variable as well as across adjectival categories — tends to follow one of three types of patterns, exemplified, respectively, by really, so and dead. Variant retraction, however, follows only one schema. Importantly, numerical decline in the system does not necessarily go hand in hand with a reduction in breadth of application.

2021 ◽  
Author(s):  
He Zhang ◽  
Jianxun Zhang ◽  
Rui Wang ◽  
Yazhe Huang ◽  
Mengxiao Zhang ◽  
...  

AbstractWith the rapid development of the Internet of Things (IoT) in the 5G age, the construction of smart cities around the world consequents on the exploration of carbon reduction path based on IoT technology is an important direction for global low carbon city research. Carbon dioxide emissions in small cities are usually higher than that in large and medium cities. However, due to the huge difference in data environment between small cities and Medium-large sized cities, the weak hardware foundation of the IoT, and the high input cost, the construction of a small city smart carbon monitoring platform has not yet been carried out. This paper proposes a real-time estimate model of carbon emissions at the block and street scale and designs a smart carbon monitoring platform that combines traditional carbon control methods with IoT technology. It can exist long-term data by using real-time data acquired with the sensing device. Therefore, the dynamic monitoring and management of low-carbon development in small cities can be achieved. The contributions are summarized as follows: (1) Intelligent thermoelectric systems, industrial energy monitoring systems, and intelligent transportation systems are three core systems of the monitoring platform. Carbon emission measurement methods based on sample monitoring, long-term data, and real-time data have been established, they can solve the problem of the high cost of IoT equipment in small cities. (2) Combined with long-term data, the real-time correction technology, they can dispose of the matter of differences in carbon emission measurement under diverse scales.


2021 ◽  
Author(s):  
Xin Liu ◽  
Insa Meinke ◽  
Ralf Weisse

Abstract. Storm surges represent a major threat to many low-lying coastal areas in the world. While most places can cope with or are more or less adapted to present-day risks, future risks may increase from factors such as sea level rise, subsidence, or changes in storm activity. This may require further or alternative adaptation and strategies. For most places, both forecasts and real-time observations are available. However, analyses of long-term changes or recent severe extremes that are important for decision-making are usually only available sporadically or with substantial delay. In this paper, we propose to contextualize real-time data with long-term statistics to make such information publicly available in near real-time. We implement and demonstrate the concept of a ”storm surge monitor” for tide gauges along the German North Sea and Baltic Sea coasts. It provides automated near real-time assessments of the course and severity of the ongoing storm surge season and its single events. The assessment is provided in terms of storm surge height, frequency, duration, and intensity. It is proposed that such near real-time assessments provide added value to the public and decision-making. It is further suggested that the concept is transferable to other coastal regions threatened by storm surges.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4615
Author(s):  
Olivier Pieters ◽  
Emiel Deprost ◽  
Jonas Van Der Donckt ◽  
Lore Brosens ◽  
Pieter Sanczuk ◽  
...  

Monitoring climate change, and its impacts on ecological, agricultural, and other societal systems, is often based on temperature data derived from official weather stations. Yet, these data do not capture most microclimates, influenced by soil, vegetation and topography, operating at spatial scales relevant to the majority of organisms on Earth. Detecting and attributing climate change impacts with confidence and certainty will only be possible by a better quantification of temperature changes in forests, croplands, mountains, shrublands, and other remote habitats. There is an urgent need for a novel, miniature and simple device filling the gap between low-cost devices with manual data download (no instantaneous data) and high-end, expensive weather stations with real-time data access. Here, we develop an integrative real-time monitoring system for microclimate measurements: MIRRA (Microclimate Instrument for Real-time Remote Applications) to tackle this problem. The goal of this platform is the design of a miniature and simple instrument for near instantaneous, long-term and remote measurements of microclimates. To that end, we optimised power consumption and transfer data using a cellular uplink. MIRRA is modular, enabling the use of different sensors (e.g., air and soil temperature, soil moisture and radiation) depending upon the application, and uses an innovative node system highly suitable for remote locations. Data from separate sensor modules are wirelessly sent to a gateway, thus avoiding the drawbacks of cables. With this sensor technology for the long-term, low-cost, real-time and remote sensing of microclimates, we lay the foundation and open a wide range of possibilities to map microclimates in different ecosystems, feeding a next generation of models. MIRRA is, however, not limited to microclimate monitoring thanks to its modular and wireless design. Within limits, it is suitable or any application requiring real-time data logging of power-efficient sensors over long periods of time. We compare the performance of this system to a reference system in real-world conditions in the field, indicating excellent correlation with data collected by established data loggers. This proof-of-concept forms an important foundation to creating the next version of MIRRA, fit for large scale deployment and possible commercialisation. In conclusion, we developed a novel wireless cost-effective sensor system for microclimates.


Oceanology ◽  
2010 ◽  
Vol 50 (1) ◽  
pp. 139-147
Author(s):  
S. A. Sviridov ◽  
N. A. Palshin ◽  
V. A. Solovyev ◽  
A. V. Zaretskiy ◽  
A. A. Metal’nikov

Author(s):  
Meghna Sharma ◽  
Jagdeep Kaur

The problem of hazard detection and the robotic exploration of the hazardous environment is the need of the of the hour due to the continuous increase of the hazardous gases owing to the industry proliferation and modernization of the infrastructure. It includes radiological materials and toxic gases with long term harmful effects. The definition of a hazardous environment and extracting the parameters for the same is itself a complicated task. The chapter proposes the alarming solution to warn about the level of hazardous effects for a particular environment area. The need of the hour is to build complete systems that can autosense the hazardous environment even in low visibility environment and raise an alarm. The combination of IoT and machine learning can be best used for getting the real-time data and using the real-time data for analyzing the accurate current hazardous level as well as prediction of future hazards by reading the parameters for detection and also selecting the useful parameters from them.


2010 ◽  
Vol 6 (S273) ◽  
pp. 403-407 ◽  
Author(s):  
L. Győri ◽  
T. Baranyi ◽  
A. Ludmány

AbstractThe primary task of the Debrecen Observatory is the most detailed, reliable and precise documentation of the solar photospheric activity. This long-term effort started with the continuation of the Greenwich photoheliograph program, this is the Debrecen Photoheliographic Data (DPD) sunspot catalogue based on ground-based observations. The profile of the work has later been extended to space-borne observations (SOHO/MDI and SDO), to magnetic fields and faculae as well as to higher temporal resolution (one hour) and nearly real-time data supply. The database also includes historical observations. The web-presentation developed for the material is easy to search and browse. We describe the main characteristics of these catalogs, and their advantages. We summarize the recent advances in the procedure of their compilation, and the available sets of the data and images.


Author(s):  
Elizabeth Bondi

Conservation of our planet’s natural resources is of the utmost importance and requires constant innovation. This project focuses on innovation for one aspect of conservation: the reduction of wildlife poaching. Park rangers patrol parks to decrease poaching by searching for poachers and animal snares left by poachers. Multiple strategies exist to aid in these patrols, including adversary behavior prediction and planning optimal ranger patrol strategies. These research efforts suffer from a key shortcoming: they fail to integrate real-time data, and rely on historical data collected during ranger patrols. With the recent advances in unmanned aerial vehicle (UAV) technology, UAVs have become viable tools to aid in park ranger patrols. There is now an opportunity to augment the input for these strategies in real time. Detection is done on real-time data collected from UAVs. Detection will then be used to learn adversaries’ behaviors, or where poaching may occur in the future, in future work. This will then be used to plan where to fly in the long term, such as the next mission. Finally, planning where to fly next during the current flight will depend on the long term plan and the real-time detections in case a poacher is spotted. Through our collaboration with Air Shepherd, a program of the Charles A. and Anne Morrow Lindbergh Foundation, we have already begun deploying poacher detection prototypes in Africa and will be able to deploy further advances there in the future.


Sign in / Sign up

Export Citation Format

Share Document