scholarly journals Genetics Of Gluten Intolerance

2020 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Olga Antonova
Keyword(s):  
Author(s):  
Viia Kõiv ◽  
Tanel Tenson

Abstract Gluten is a mixture of storage proteins in wheat and occurs in smaller amounts in other cereal grains. It provides favorable structure to bakery products but unfortunately causes disease conditions with increasing prevalence. In the human gastrointestinal tract, gluten is cleaved into proline and gluten rich peptides that are not degraded further. These peptides trigger immune responses that might lead to celiac disease, wheat allergy, and non-celiac gluten sensitivity. The main treatment option is a gluten-free diet. Alternatively, using enzymes or microorganisms with gluten-degrading properties might alleviate the disease. These components can be used during food production or could be introduced into the digestive tract as food supplements. In addition, natural food from the environment is known to enrich the microbial communities in gut and natural environmental microbial communities have high potential to degrade gluten. It remains to be investigated if food and environment-induced changes in the gut microbiome could contribute to the triggering of gluten-related diseases. Key points • Wheat proteins, gluten, are incompletely digested in human digestive tract leading to gluten intolerance. • The only efficient treatment of gluten intolerance is life-long gluten-free diet. • Environmental bacteria acquired together with food could be source of gluten-degrading bacteria detoxifying undigested gluten peptides.


Gut ◽  
1992 ◽  
Vol 33 (2) ◽  
pp. 194-197 ◽  
Author(s):  
J A Arnason ◽  
H Gudjonsson ◽  
J Freysdottir ◽  
I Jonsdottir ◽  
H Valdimarsson

Pain Medicine ◽  
2011 ◽  
Vol 12 (8) ◽  
pp. 1262-1266 ◽  
Author(s):  
Dalvina E. Hanu-Cernat ◽  
Alex N. Phipps ◽  
Jon H. Raphael

2013 ◽  
Vol 6 (4) ◽  
pp. 159-184 ◽  
Author(s):  
Anthony Samsel ◽  
Stephanie Seneff

ABSTRACT Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate’s strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate’s known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin’s lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1642
Author(s):  
Diego Salazar ◽  
Mirari Arancibia ◽  
Diego R. Silva ◽  
María Elvira López-Caballero ◽  
María Pilar Montero

The aim of this study was to determine the potential of Andean Crop Flours (ACF) to develop muffins suitable for people with celiac disease or gluten intolerance, as these flours do not contain gluten in their composition. The physico-chemical, rheological, microbiological and sensory properties of muffins from different blends of the following ACF were evaluated: camote (Ipomea batatas), oca (Oxalis tuberosa), achira (Canna indica) and mashua (Tropaeolum tuberosum), formulated with sucrose or sucralose. Wheat muffins with sucrose were used for control purposes. The effect of 5-day storage on color, texture and microbiology was also studied. The use of ACF sharply increased the amount of total dietary fiber, while fat and protein contents were slightly lower with respect to the control. Regarding color, formulations with ACF resulted in darker products, showing an important decrease in L* and b* values while a* increased in all ACF formulations. According to their rheological properties, all doughs showed an unstructured and viscous behavior, and the mixture of camote, achira and mashua with sugar was very similar to wheat muffin. On textural parameters, there was an increasing (p < 0.0) effect on firmness and chewiness noticeable on day 5 in all samples. The resultant muffins were considered safe products due to low counts of total microorganisms, molds and yeasts and the absence of Enterobacteria and Staphylococcus aureus during storage. Muffins with ACF showed good overall acceptability, especially muffins containing sucralose, which obtained the highest score. This study showed that ACF could be used as an alternative raw material in the preparation of gluten-free muffins with good nutritional quality, thus providing a useful alternative for underused crops.


2020 ◽  
Vol 50 (2) ◽  
pp. 232-241
Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Stanislav Smirnov

Introduction. Diet therapy is one of the main approaches to the treatment of various diseases of the digestive system. A strict lifetime diet is the main method of treatment for gluten intolerance. However, young patients, who are particularly sensitive to dietary restrictions, often fail to follow the diet due to the limited menu of recommended foods and dishes. The diet for children with gluten intolerance should include a sufficient amount of gluten-free grain-based products. They provide children with carbohydrates, dietary fibers, vegetable proteins, fats, B vitamins, and minerals, e.g. potassium, magnesium, selenium, etc. In this regard, it is urgent to develop new types of specialized gluten-free products to expand the diet both in terms of nutritional value and taste diversity. Study objects and methods. The research is part of a project on the development of dry gluten-free mixes based on buckwheat and amaranth with fruit, vegetable, and berry raw materials. The new formulations are intended for children older than three years of age with gluten intolerance. The research objective was to study the main nutrients in amaranth and buckwheat flours. The study involved the method of infrared spectroscopy using a SpectraStar 2500 analyzer. The data obtained made it possible to calculate the nutritional and energy value of products based on amaranth and buckwheat flours, as well as fruit, vegetable, and berry powders intended for children older than three years of age with gluten intolerance. Results and discussion. Amaranth flour proved to be rich in protein (13.4%), lipids (5.1%), and ash (2.8%). Native buckwheat flour contained 7.5% of protein, 3.6% of lipids, and 1.4% of ash. The carbohydrate content appeared approximately the same in both samples (56–58%). The dry gluten-free mixes can serve as an important source of vegetable protein (up to 9.44 g per 100 g of the finished product), carbohydrates (up to 40.08 g per 100 g of the finished product, and energy (from 158.12 to 221.85 kcal per 100 g of the finished product). Conclusion. The high nutritional and biological value of amaranth and buckwheat flours, as well as fruit, vegetable, and berry powders, confirmed the prospect of using them as the main components for functional foods. Amaranth and buckwheat contain no gluten but are rich in protein, amino acids, saturated and unsaturated fatty acids, minerals, and biologically active elements, which makes them an important source of nutrition for children with gluten intolerance.


Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Stanislav Smirnov

Introduction. For patients with gluten intolerance, diet therapy is the main method of treatment. However, gluten-free diets are found lacking in many important components. Children that fail to consume neccessary nutrients or have problems with their absorption tend to be physically retarded. Gluten-free diet may increase the risk of autoimmune diseases, especially type I diabetes. Therefore, products for children with celiac diseases should be both gluten-free and have adequate bioavailability of carbohydrates. This article features the chemical composition of amaranth, the geometric structure of starch grains, and its effect on the formation of colloidal solutions. It also compares the glycemic index (GI) of amaranth with other gluten-free grains, i.e. rice, buckwheat, and corn. Study objects and methods. The research featured native amaranth grain (Amaranthus cruentus) (Mexico), puffed amaranth kernels (Mexico), and coarse granular amaranth flour (Mexico). Results and discussion. Amaranth grain contains 12.5–23% of protein, 50.7–77.0% of carbohydrates, 6.0–8.0% of lipids, 10.5–18.3% of dietary fiber, and 2.5–3.5% of minerals. The GI of amaranth and its products were compared with similar values of other glutenfree crops, namely rice, buckwheat, and corn. Amaranth grain and its products demonstrated a higher GI, if compared with other gluten-free grain raw materials. The GI of amaranth grain was 87, the GI of the puffed amaranth kernels was 101, and the GI of the coarse granular amaranth flour was 97. Amaranth starch is easy to digest, which is mainly due to the high content of amylopectin (88 to 98%), since amylopectin breaks down faster than amylose. The relatively small size of starch granules (1.5–3.0 microns) increases the attack capacity of enzymes. These properties make amaranth starch glycemic, or low-resistant, which means that amaranth is easily digested and possesses stability to retrogradation. Conclusion. The unique nutritional and functional properties of amaranth gluten-free products can significantly improve the diet of children with gluten intolerance. However, amaranth starch and its products have a high GI. Hence, it is necessary to control the percentage of these components in formulations and be careful with the selection of additional components and their impact on the total GI.


Author(s):  
Anusha Thakur

Shifting consumer preferences towards meat alternatives can be attributed to the factors such as health and ecological benefits, as well as meat adulteration. Increasing consumer demand for better grade of meat alternatives is also expected to boost the market growth in the near future. Protein sources from maize, peas, rice, and chickpeas are anticipated to witness significant growth and new developments. Alternatives such as bean curd or wheat gluten are expected to be the beneficial source of protein and phosphorous. This can be attributed to the fact that 50 g of vital wheat gluten in combination with water produces 2 ounces of gluten in a solid form, which further comprises of nearly 38 g of protein in each serving. However, factors such as the higher cost of meat substitutes inhibit the market growth, particularly in developing economies, wherein the dietary awareness is expected to be lower. Further factors, related to gluten intolerance and soy allergy, are also anticipated to restrain the market growth. This chapter includes a market study of meat alternatives across the world based on analyzing, estimating, and forecasting for the 2015-2025 period. Market determinants of the meat alternatives market are also explored to analyze market drivers, restraints, challenges, opportunities, trends, and developments. The competitive landscape section includes information related to key market players with an overview of product portfolio and strategic initiatives.


Sign in / Sign up

Export Citation Format

Share Document